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Abstract
Purpose Compound-specific stable isotope (CSSI) finger-
printing of sediment sources is a recently introduced tool to
overcome some limitations of conventional approaches for
sediment source apportionment. The technique uses the 13C
CSSI signature of plant-derived fatty acids (δ13C-fatty acids)
associated with soil minerals as a tracer. This paper provides
methodological perspectives to advance the use of CSSI fin-
gerprinting in combination with stable isotope mixing models
(SIMMs) to apportion the relative contributions of different
sediment sources (i.e. land uses) to sediments.

Results and discussion CSSI fingerprinting allows quantita-
tive estimation of the relative contribution of sediment sources
within a catchment at a spatio-temporal resolution, taking into
account the following approaches. First, application of CSSI
fingerprinting techniques to complex catchments presents par-
ticular challenges and calls for well-designed sampling strat-
egies and data handling. Hereby, it is essential to balance the
effort required for representative sample collection and anal-
yses against the need to accurately quantify the variability
within the system. Second, robustness of the CSSI approach
depends on the specificity and conservativeness of the δ13C-
FA fingerprint. Therefore, saturated long-chain (>20 carbon
atoms) FAs, which are biosynthesised exclusively by higher
plants and are more stable than the more commonly used
short-chain FAs, should be used. Third, given that FA concen-
trations can vary largely between sources, concentration-
dependent SIMMs that are also able to incorporate δ13C-FA
variability should be standard operation procedures to correct-
ly assess the contribution of sediment sources via SIMMs.
Conclusions This paper reflects on the use of δ13C-FAs in
erosion studies and provides recommendations for its applica-
tion. We strongly advise the use of saturated long-chain (>20
carbon atoms) FAs as tracers and concentration-dependent
Bayesian SIMMs. We anticipate progress in CSSI sediment
fingerprinting from two current developments: (i) develop-
ment of hierarchical Bayesian SIMMs to better address catch-
ment complexity and (ii) incorporation of dual isotope ap-
proaches (δ13C- and δ2H-FA) to improve estimates of sedi-
ment sources.
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1 Environmental and ecological impact of water
erosion

Water erosion is considered to be the gravest threat to soil
security globally, leading to lower crop yields and contamina-
tion of freshwater and estuaries (Koch et al. 2013;
Montanarella et al. 2016). Soil loss and the associated loss
of nutrients and organic carbon (OC) can have serious on-
site impacts, particularly for arable land, reducing soil produc-
tivity and threatening sustainable agricultural production. This
is especially problematic in hilly landscapes (Pimentel 2006;
Zuazo and Pleguezuelo 2008; Pimentel and Burgess 2013;
Rickson et al. 2015). The transfer of fine sediment from crop-
land to water bodies is considered to be the world’s largest
non-point pollution source and creates detrimental off-site ef-
fects (Vörösmarty et al. 2010). Fine sediment (hereafter sedi-
ment) is defined as well-mixed suspended mineral and organic
particulates with diameter less than 2mm that have beenmoved
from their site of origin by water. The most serious environ-
mental effect of sediment loss to water bodies is the contami-
nation of water with nutrients, pesticides and other toxic
chemicals, which in turn adversely affects aquatic habitat qual-
ity (Gardner and Gerrard 2003; Owens et al. 2005; Sanchez-
Chardi et al. 2009; Urban et al. 2009; Bunzel et al. 2015).
Moreover, siltation significantly reduces water storage capacity
of lakes and reservoirs, decreasing their economic lifespan. The
average annual storage capacity loss in the world’s reservoirs
has been estimated to be around 0.5–1%, although losses as
high as 4–5% have been reported for individual reservoirs
(Smith et al. 2002; Haregeweyn et al. 2012; Wisser et al.
2013). The relationship between soil erosion and siltation in
floodplains and reservoirs is not straightforward
(Montanarella et al. 2016) as it is controlled by complex mech-
anisms resulting from the specific hydro-sedimentological be-
haviour of each catchment. Nevertheless, the costs associated
with these processes can be high: In the USA and the European
Union, on-site economic costs of water erosion have been esti-
mated at US$15 and 20 billion per year, respectively (Troeh
et al. 2004; Panagos et al. 2015). The off-site annual cost of
human-induced sediment influx to rivers and streams ranges
from $20 to 50 billion in North America alone (Mukundan
et al. 2012). Given these ecological and social costs, erosion
and associated sedimentation issues have become a major part
of the international environmental agenda and are identified as
major causes of catchment, freshwater and estuary degradation.

Without proper soil conservation practices, sediment trans-
fer from key sediment sources (hotspots defined by land use
type or sub-catchment) is projected to intensify, particularly if
climate change increases the frequency of heavy rainfall
events, drought periods, freezing-thawing of soil and land
use change (Nearing et al. 2004; Zhang et al. 2005;
Boardman 2006; Thothong et al. 2011; Ulén et al. 2012; Sun
et al. 2013; Bollasina 2014). Consequently, understanding the

main sediment sources (hereafter sources) can make soil con-
servation management strategies more efficient (Mukundan
et al. 2012). Sediment fingerprinting techniques offer methods
of identifying sources using soil/sediment properties and the
application of mixing models (Collins et al. 1998; Walling
2013). A wide range of sediment-associated properties have
been used for this purpose, including geochemical properties,
radionuclides, mineral magnetism, bulk stable isotopes and
colour (Martinez-Carreras et al. 2010; Collins et al. 2013;
Walling et al. 2013). While these robust and highly transfer-
able fingerprints can provide accurate estimates of source ap-
portionment for a range of agro-ecosystems, they are typically
limited in their ability to discriminate between sources in cases
where agricultural land use types span geological boundaries
or where geological variations in the landscape are small
(Gellis and Walling 2011; Blake et al. 2012; Hancock and
Revill 2013; Chen et al. 2016). In addition to inorganic prop-
erties, plant-specific organic molecules (biotracers) found in
the sediment can also be used for fingerprinting and are more
specific to discriminate between different land uses. The use
of compound-specific stable isotope (CSSI) signatures
(Fig. 1), for example, is emerging as a promising sediment
fingerprinting technique for this purpose. The isotopic signa-
ture of individual compounds in a complex mixture is hereaf-
ter referred to as a CSSI signature, as opposed to the bulk
stable isotopic signature, which is the isotopic signature of
the entire soil or sediment. The CSSI technique exploits dif-
ferences in the stable isotope signature of individual biotracers
to identify and apportion the contribution of specific land uses
to the sediment load (Gibbs 2008; Blake et al. 2012; Gibbs
2013; Cooper et al. 2015; Alewell et al. 2016).

Fatty acids (FAs) and alkanes are commonly used as
biotracers in CSSI-based source apportionment techniques
(Table 1). A key characteristic of these compounds is that their
CSSI signatures vary across sources and survive deposition in
soil and sediment in a recognizable form (Rosell-Melé and
McClymont 2007). Fatty acids are well suited to water erosion
studies because of their high abundances in soils (universal
biotracers) and their polarity, which allows them to disperse
and adsorb to soil particles (Gibbs 2008; Feakins et al. 2016).

Many biological, environmental and analytical factors con-
tribute to FA carbon and hydrogen isotopic variability and
uncertainty in soil and sediments (reviewed by Reiffarth
et al. (2016) for carbon). The source of the sediment is there-
fore not the only factor contributing to biotracer variability in
mixture signatures. While some of this variability can be ad-
dressed by improving sampling and analysis strategies, even
the best methods will result in more CSSI variability than can
be explained by the mixture of source signatures alone.
Fortunately, recent advances in Bayesian stable isotope
mixing models (SIMMS) have established robust methods to
address CSSI variability in biotracers and uncertainty in the
estimation of proportional source contributions (Moore and
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Semmens 2008; Semmens et al. 2009; Parnell et al. 2013;
Stock and Semmens 2016).

In this paper, we provide a comprehensive methodological
perspective on the application of FA isotope signatures for the
apportionment of sediment sources. We focus on the follow-
ing topics: (i) the concept of CSSI sediment fingerprinting
(Section 2), (ii) variability in CSSI of FAs (Section 3), (iii)
soil and sediment sampling strategies (Section 4), (iv) FA
extraction and CSSI measurement (Section 5) and finally (v)
challenges and opportunities associated with using the CSSI
signature of sources and sediments in Bayesian mixing
models to obtain source contributions to sediments
(Section 6).

2 Concept behind the CSSI sediment fingerprinting
approach

Different properties of biotracers, such as abundance, compo-
sition and isotopic signature, provide a powerful means to
identify and apportion the sources of deposited and suspended
sediments across a range of aquatic environments (Table 1).
Biotracer abundance and composition have mostly been used

to differentiate between terrestrial and aquatic organic mat-
ter sources in river, lake and estuarine sediments (Ouyang
et al. 2015). Many biotracers are neither land use-specific
nor conservative because they degrade quickly in the sedi-
ment. On the other hand, the stable isotopic signatures of
plant-derived FAs have the potential to differentiate be-
tween sediments originating from different land uses, since
their isotopic signatures record ecological and hydrological
conditions during their biosynthesis. Additionally, plant-
derived FAs are less influenced by diagenesis and are stable
over long timescales in soil and sediments (Sinninghe
Damsté and Schouten 2006; Drenzek et al. 2007; Gibbs
2008; Cooper et al. 2015). For these reasons, CSSI signa-
tures of plant-derived FAs are appropriate biotracers for the
identification and estimation of source contribution to sed-
iment using SIMMS (Table 1). Most CSSI studies use C
(δ13C) and/or H (δ2H) isotopes of biotracers to identify
and assess sources and delivery processes of soil and ter-
restrial organic matter to aquatic ecosystems. The focus of
this paper is on sediment source apportionment, i.e. relative
contributions of source soils to sediment mixture, and not
on the differentiation between terrestrial versus aquatic or-
ganic matter inputs.

n Potential sources   
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purification 

and isotope 

ratio 

measurement  
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Un-mix sediment  
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Fig. 1 Overview of the CSSI sediment fingerprinting concept: (i)
Sediment generating rainfall events produce sediment from different
sources which are then mixed during delivery processes and end up in
the sediment of rivers and lakes, (ii) biotracers (e.g. FAs) are extracted
from the soil and sediments and their δ13C values are measured and (iii)
FAs are selected based on their biochemistry, behaviour (e.g.

conservativeness, stability) and presence in sources and sediments.
Source and sediment CSSI values are fed into a concentration-
dependent Bayesian-stable isotope mixing model. The model accounts
for variability in CSSI values of sources and sediment to generate a
proportional density distribution of source contributions to sediment
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CSSI sediment fingerprinting using δ13C of fatty acids
(δ13C–FAs) was first successfully applied by Gibbs (2008)
in New Zealand to assess the relative contribution of sources
associated with different land uses to estuarine sediment. The
following steps were taken to implement this technique: (i)
definition and sampling of potential sources (e.g. cropland,
forest and pasture) within a catchment and collection of sed-
iment mixture samples from a target area, (ii) measurement of
FA isotopic signatures from both the potential sources and
sediment, (iii) selection of a subset of FAs whose carbon iso-
topic signatures are apparently conserved and well-separated
across sources and (iv) estimation of proportional source con-
tributions to the sediment using SIMMS based on δ13C-FA
values of the sediments and sources (Fig. 1). Using CSSI
signatures of FAs to apportion sources of sediment by land
use assumes that (i) the land use categories under consider-
ation (n-potential sources in Fig. 1) have plant communities
producing FAs with distinct isotopic signature and that these
FAs label the soil with CSSI signatures that reflect land uses
(Gibbs 2008, 2013), and (ii) when soil is eroded and
transported to the aquatic system, the FA label is transported
together with the soil particles through the system. In the

transport process, particles originating from different land
uses, and therefore bearing their specific CSSI labels, are
mixed (e.g. three sources in Fig. 1) such that the sediment
represents a mixture of contributing upstream sources. To ob-
tain CSSI values, FAs are extracted from soil and sediments,
purified and derivatised for measurement by gas
chromatography-isotope ratio mass spectrometry. FAs used
as inputs for mixing models should be present in all sources
and sediment samples at a concentration that allows precise
isotopic measurement. Mixing models assume that the stable
isotopic composition of each FA in the mixture (the sediment
sample) is a linear combination of the isotopic compositions
of that specific FA in all contributing sources. The SIMMs
estimate the probability distribution of each source’s propor-
tional contribution (land use types) to the measured mixture
(sediment sample).

3 Fatty acids as biotracers

Plants synthesize FAs containing different numbers of carbon
atoms. These FAs are commonly classified as either short-

Table 1 Sediment fingerprinting techniques using different properties of biotracers

Biotracers Data analysis and modelling Advantages Disadvantages

Molecular concentration sediment fingerprintinga

Fatty acids
(Hu et al. 2006; Dai and Sun

2007; Tuo et al. 2011;
Zocatelli et al. 2012;
Bergamino et al. 2014)

Principle component analysis (PCA) or
multivariate analysis of variance (MANOVA)
of normalized fatty acids
concentrations of sediment sources and
sediments, ratio of (C26+ C28)/ΣCeven FAs,
C22/C24 di-FAs and C20/C20+ ω-hydroxy
FAs, isotopic mixing models (SIAR)

i. Unique distribution in
different plants

ii. Structural features provide
information about organic
matter (OM) sources and
cycling in soil and sediments

iii. Spatial and temporal
changes

i. Lack of land use specificity
ii. Qualitative information about

sediment sources
iii. Content changes in sediments
iv. Present in trace level
v. Difficult to link with soil

(mineral) sources
Alkanes
(Seki et al. 2010; Tuo et al.

2011; Chen et al. 2016)

PCA alkanes content from sediment source as
well as sediments, odd-numbered n-alkanes
in the range of C27–C31 indicate input from
terrigenous OM, relative chain length ratio
and SIAR

Lignin phenolic component
(Goni et al. 1998; Loh et al.

2012)

Syringyl/vanillyl (S/V) ratio and
cinnamyl/vanillyl (C/V) ratio provide
information angiosperm vs. gymnosperm or-
igin

Woody vs. non-woody

Compound-specific stable isotope (CSSI) sediment fingerprintingb

Fatty acids
(Gibbs 2008; Blake et al. 2012;

Hancock and Revill 2013;
Alewell et al. 2016; Brandt
et al. 2016)

Subset of δ13C-FAs from the sediment sources
are compared with a sediment via isotopic
mixing models (IsoSource and SIAR)

i. Assessment of spatial and
temporal changes of
sediment/OM possible in
lake, river and estuarine

ii. Sediment routing accounted
iii. Robust information about

relative contribution of land
use in the sediment

i. Requires sophisticated
analytical facility

ii. No generic guide to select
number of samples required
and subset of CSSI

iii. Presence at trace concentration
(e.g. in subsoil) does not allow
to measure isotopic signature
accurately

Alkanes
(Seki et al. 2010; Cooper et al.

2015)

Long-chain alkanes δ13C and δ2H from OC
from sources and sediment compared via
multivariate extension of isotopic mixing
model (SIAR) and molecular distribution

a Composition and abundance of biotracers are used
b Isotopic signatures of biotracers are used
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chain (≤20 carbon atoms, i.e. low molecular weight) or long-
chain (>20 carbon atoms, i.e. high molecular weight). While
short-chain FAs are found in the cellular membranes of vari-
ous organisms, long-chain FAs are found predominantly in the
cuticular waxes of vascular plant leaves, allowing them to be
used as specific tracers for plant-derived organic matter
(Naraoka et al. 1995; Matsumoto et al. 2007; Galy and
Eglinton 2011). Therefore, the analysis of long-chain FAs in
soils offers the possibility to specifically trace organic matter
that is plant-derived (Amblés et al. 1998; Bull et al. 1998;
Matsumoto et al. 2007; Tuo et al. 2011; Jandl et al. 2013).

3.1 Isotopic signatures of fatty acids in plants

3.1.1 Carbon isotopes (δ13C)

It is generally known that the CO2 fixation pathways of the
plant (C3, C4 or CAM) induce different isotopic fraction-
ations, leading to different δ13C-FA values (e.g. Chikaraishi
2014; Reiffarth et al. 2016). Other processes in the biosynthe-
sis of FA can also induce differences in isotopic fractionation,
and hence δ13C-FA values, within each plant type (C3, C4 or
CAM). Chikaraishi (2014) and Reiffarth et al. (2016) provide
a comprehensive review of the biological and environmental
sources of δ13C-FAs variability in plants. Briefly, decarboxyl-
ation (e.g. of pyruvate to form acetyl-CoA) appears to be an
important and potentially species-specific process driving iso-
topic discrimination during FA biosynthesis (Dungait et al.
2010; Chikaraishi 2014 and references therein). As a result
of this, 13C depletion of long-chain FAs can be as high as
10‰ relative to glucose (Chikaraishi et al. 2004b; Hobbie
and Werner 2004; Badeck et al. 2005; Dungait et al. 2008;
Chikaraishi 2014). However, the effect is more pronounced
for C4 compared to C3 plants, with an average 9.5 and 3.5‰
depletion relative to bulk plant tissue, respectively (Agrawal
et al. 2014). A significant difference in δ13C also exists be-
tween C3 angiosperms and gymnosperms, where gymno-
sperm δ13C-FAvalues are on average 3‰more enriched com-
pared to that of angiosperms (Chikaraishi et al. 2004a). The
isotopic signature of individual FA homologues in C3 plants is
characterized by a gradual depletion with increasing carbon
number (e.g. from C24 to C32 depletion can be up to −2.7‰),
whereas in C4 plants the δ

13C-FA values stay constant or are
slightly enriched (up to +0.7‰ for C24 to C32) (Agrawal et al.
2014 and references therein). Depending on external parame-
ters such as soil water availability, temperature and sunlight,
the extent of isotope fractionationmay differ even for the same
pathway, especially for C3 plants (Heaton 1999; Chikaraishi
et al. 2004a). In addition, altitude, slope and aspect are topo-
graphical factors indirectly affecting carbon isotopic ratios
through their effect on climatic (e.g. atmospheric pressure,
temperature and precipitation) and edaphic factors (e.g. soil
age, soil depth, nutrient status and water holding capacity)

(Warren et al. 2001). Altogether, carbon isotopic variation in
plant FAs is partially explained at the spatio-temporal, inter-
species and even intra-species levels (Dungait et al. 2008,
2010). However, the influence of topography on FA isotopic
signatures of different land cover is still not clear and requires
further research.

3.1.2 Hydrogen isotopes (δ2H)

The hydrogen isotopic composition of FAs (δ2H-FAs) is used
as a tracer in biogeochemical and paleo-environmental studies
(Jones et al. 2008; Seki et al. 2012). The hydrogen isotopic
signature of plant FAs and alkanes originates from a common
precursor and depends ultimately on the δ2H value of leaf
water (Sachse et al. 2012; Ponton et al. 2014; Feakins et al.
2016). The signature of FAs and alkanes are related: Cn-FAs
(e.g. C30 FA) are the biosynthetic precursors of the Cn-1-al-
kanes (e.g. C29 alkanes), but due to a biosynthetic isotopic
fractionation during the decarboxylation process, there is an
offset in δ2H value between Cn-1-alkanes and Cn-FAs pairs.
Nevertheless, Feakins et al. (2016) observed a lack of overall
consistency in decarboxylation-associated 2H fractionation
between pairs of FAs and alkanes (e.g. C30 and C29 pairs)
among plant species. As a consequence, overall compound
class offset (i.e. between FAs and alkanes) is insignificant at
the plant community level where sample size is large enough.
As a result, this offset is also insignificant on the land use
level, since plant community, which integrates FAs
biosynthesised from a multitude of plants over a large area
and time scale, defines land use. Therefore, δ2H-FAs are likely
to be similar to those of alkanes in terms of their usefulness for
discriminating between soils developed under different plant
ecotypes (i.e. grass, shrubs or wood) (Liu et al. 2006; Hou
et al. 2007; Liu and Yang 2008) and recording elevation gra-
dients defined by the isotopic signature of precipitation
(Ponton et al. 2014; Feakins et al. 2016). However, very lim-
ited δ2H-FA data exists from living plants, while data of soils
and sediments are in line with those of alkanes.

In addition to biosynthetic fractionation, climatic and plant
morphological characteristics can affect the δ2H values of FAs
due to differences in plant water sources, temperature, precip-
itation, evapotranspiration and root or leaf morphology. Only
a few studies have investigated factors affecting leaf δ2H
values of FAs (Huang et al. 2004; Chikaraishi and Naraoka
2007; Hou et al. 2007; Feakins et al. 2016). Hydrogen in FAs
is derived from leaf water during photosynthesis. Leaf water is
itself controlled by soil water, which originates from rainfall or
snowmelt in temperate climates. Besides fractionation during
photosynthesis and FA biosynthesis, δ2H values will be con-
trolled by the isotopic signature of leaf water at the time they
are biosynthesised (Chikaraishi and Naraoka 2003; Seki et al.
2010; Seki et al. 2012; Liu et al. 2015). In moisture-limited
areas or seasons, hydrogen isotope values of leaf water can be
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directly enriched in deuterium by transpiration and/or indirect-
ly enriched by evaporation of soil water. It is generally accept-
ed that the uptake of soil water by plants is not associated with
discernible isotopic fractionation (Dawson et al. 2002).
However, fundamental differences can be observed in terms
of the water use of different ecological life forms (e.g. woody
plants vs. grasses) at different depths due to their root systems.
Grasses and herbs take up water from the surface soil, whereas
deep rooted trees and shrubs use water from deeper soil layers.
Since soil water δ2H usually increases with depth (Grieu et al.
2001), this may result in higher δ2H value of leaf FAs and
alkanes of trees compared to those of grasses and herbs (Liu
et al. 2006; Liu et al. 2015).

3.2 Isotopic signatures of fatty acids in soils and sediment

In agricultural land uses with patchwork fields and a wide
spectrum of crop and soil management practices, each agri-
cultural system/rotation may have distinct FA isotopic signa-
tures. Additionally, if crops are planted on land that once was
forest, the subsoil is likely to have different CSSI values (re-
lated to forest) than the surface soil (growing crops)
(Wiesenberg et al. 2004). Fatty acids in soil derive principally
from growing vegetation, vegetation from previous rotations
and crop residues (VanBergen et al. 1997;Mueller et al. 2012).
Root exudation and decomposition of organic matter in soil
can vary the proportions and isotope signatures of FAs
(Wiesenberg et al. 2004; Wiesenberg and Schwark 2006;
Dungait et al. 2008; Jandl et al. 2013), but the exact effect of
these processes is difficult to quantify. In essence, the combi-
nation of past and present FAs at a particular site provides an
isotopic fingerprint for the specific land use. Monoculture or
similar vegetation composition over years will result in low
variability of FA isotopic signatures in the source soil
(Wiesenberg et al. 2004). In contrast, agro-ecosystems and
natural systems often involve a mixture or rotation of C3 and
C4 plants seasonally or annually. Generally, rotation and/or
mixing of different crops in one field on a seasonal and/or
annual basis will blend the FA isotopic signatures of each crop
into a ‘new’ mixture of FA isotopic signatures that lies be-
tween the FA isotopic signatures of the individual crops.

The adsorption and complexation of FAs to soil and their
persistence for long periods of time in the sediment make them
unique tracers (Bianchi and Canuel 2011; Bergamino et al.
2014). Fatty acids are partially water soluble at the pH of most
natural waters and can therefore be carried down into the soil
profile with infiltrating water. Along their flow path, FAs are
adsorbed onto soil particles or trapped in the internal voids of
fine soil particles, especially clay and silt, from which they
hardly re-diffuse, thereby preserving the isotopic signature of
the plant FAs in the soil (Jandl et al. 2005; Bayrak 2006; Gibbs
2008; Blake et al. 2012). Short-chain FAs are more hydrophil-
ic and are thus more easily mobilized and leached down the

soil profile (Matsumoto et al. 2007). In contrast, long-chain
FAs (solubility decreases with increasing carbon chain length)
are more likely to be retained on the upper erodible soil layers
(Amblés et al. 1994). Fatty acid concentrations in soils and
sediment may change over time due to degradation by micro-
organisms via oxidation and re-synthesis, volatilization, dilu-
tion and dispersion (Dinel et al. 1990; Banowetz et al. 2006;
Matsumoto et al. 2007), but degradation is believed to have
little effect on δ13C-FAvalues (Chikaraishi and Naraoka 2005;
Blessing et al. 2008; Gibbs 2008). Canuel andMartens (1996)
observed that the concentration of C14 to C18 FAs degraded at
a faster rate in sediment than longer chain FAs, which had
lower or insignificant concentration reduction rates over a 5-
month period after deposition. Furthermore, unsaturated FAs
degrade faster than saturated FAs due to their higher vulnera-
bility to biological and chemical degradation (Niggemann and
Schubert 2006).

Presently, very limited effort has been directed at under-
standing the δ2H of FAs transported from source to sediment
via water erosion. However, hydrogen in FAs is covalently
linked to C by a strong and non-polar bond requiring high
activation energy for exchange, making it the most isotopical-
ly conservative H moiety (Radke et al. 2005) and thus a good
(conserved) isotope signal of water used by plants (Sachse
et al. 2012). To the best of our knowledge, there is currently
no published study that has used δ2H-FA values for sediment
source apportionment, although δ2H of long-chain FAs (e.g.
C28) was utilized to differentiate sediment particulate organic
matter between different source areas defined by the isotopic
signature of precipitation (Wilkie et al. 2013; Ponton et al.
2014).

In conclusion, based on the information currently available
in the literature and our experience, δ13C values of long-chain
saturated FAs are advised to be used for sediment source dis-
crimination and apportionment, in contrast to short-chain and
unsaturated FAs, which are less useful for this purpose.
Reasons include the fact that long-chain FAs are produced
almost exclusively by vascular plants and therefore avoid con-
tamination by microorganisms and algae at the deposition site
and that they are more resistant to degradation in soil and
sediment environments, which reduces the risk of isotopic
fractionation (Hu et al. 2006; Bourgeois et al. 2011; Fang
et al. 2014; Alewell et al. 2016; Reiffarth et al. 2016).
Furthermore, data on δ2H-FAs might allow for an improved
discrimination between land use types, mainly based on plant
ecotypes (e.g. grasses, shrubs and trees). δ13C and δ2H values
in plants are controlled by largely independent mechanisms,
though both are present in the same molecule and thus follow
exactly the same transit through the catchment. Therefore,
compound-specific dual isotopes (δ13C and δ2H) of FAs could
provide better source/land use information on FAs than single
isotopic analyses (Krull et al. 2006; Seki et al. 2010; Cooper
et al. 2015).
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4 Sources and sediment sampling strategies

4.1 Sources

In the CSSI approach, a catchment should be subdivided into
spatial sources (i.e. sub-catchments (Fig. 2) or land use types
(Fig.3a)) using a reconnaissance survey and topographic or
drainage maps as background information. Source soil sam-
pling should provide FA isotope signatures encompassing the
local spatial variability (within sediment sources); in other
words, every land use should be represented by a stratified
random sampling design that accounts for factors such as field
size and patchy agriculture practices. Particular attention
should be paid to the collection of erodible topsoil within a
land use, as soil is sensitive to erosion and thus connected to
the stream network (Olley and Caitcheon 2000; Hancock and
Revill 2013; Tiecher et al. 2015). Collection of transported

sediment from the lowest point of a single land use site can
integrate the variation within that site, thus providing an inte-
grated signal of erodible soil from that source. Beyond land
use types, other important sources include unpaved roads,
eroded riverbanks, river channels containing sediment from
earlier erosion events and any other site-specific secondary
sources along the river channel. Currently, analytical cost is
one of the most important factors influencing the sampling
intensity and number of samples. The question of whether to
use spatially integrated random composite samples (i.e. soil
samples obtained randomly from different positions within the
land use that are then combined to make composite samples)
is therefore a tradeoff between analytical cost saving and the
need to determine the degree of δ13C-FA spatial variability
(Brandt et al. 2016): a question which can only be answered
in terms of specific research objectives. Spatially integrated
samples integrate larger spatial and temporal scales and are
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Fig. 2 Sediment sampling concept for dealing with the hierarchical
structure of a complex drainage basin. The larger catchment can be
broken up into sub-catchments, and each sub-catchment may contain
different sediment sources to evaluate the sediment contributions from

each sub-catchment or source (e.g. A, B, C, etc.). Hence, sediment from a
tributary upstream of confluence becomes a sediment source for the
downstream sediment sample (e.g. at confluence I (see inset), sediment
samples 1 and 2 are the sources for sediment sample 3)
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therefore less susceptible to potential sampling bias caused
by annual/seasonal variation in isotopic fractionation dur-
ing FA production. Importantly, the complexity of a larger
catchment can be better captured by integrating various
sub-catchments (Fig. 2). Here, a primary consideration is
to account for sediment contribution from sub-catchments
to the main river system that drains the larger catchment
(Rhoton et al. 2008; Vale et al. 2016). Therefore, sediment
from the tributaries upstream of confluence becomes
sources for downstream sediments (Fig. 2 I, II, III and
IV), and sediment traps should be located accordingly. It
is important to collect sediment samples downstream of the
confluence at distances sufficient to allow for the complete
mixing of upstream sources.

When designing sampling strategies, it is important to con-
sider the relative timeframes represented by source and sedi-
ment samples. For instance, bulk and FA stable carbon isoto-
pic signatures of source soils might not be constant over mul-
tiple years (Fox and Martin 2015), and it is thus advised to
resample the sources for every sediment sampling campaign.
Otherwise, bias can be introduced when older source samples
are used to apportion more recent sediment samples.

4.2 Sediment

Different types of sediment samples can be selected, depend-
ing on the timeframe and flux of interest and may range from
event-based samples collected during a specific event to
suspended sediment deposited within a given time frame.
Examples of the latter include sediment collected using
time-integrated mass-flux samplers (TIMS) or samples of de-
posited sediment from a flood plain, which may contain sed-
iment from the last flood event or that which has been accu-
mulated over a long time period (e.g. sediment core). Event-
based samples can be collected during flood events by filtra-
tion or by sedimentation after pumping water out of the
stream. Time-integrated mass-flux samplers (also known as
Phillips samplers) effectively trap suspended sediments by
reducing flow velocity when water enters the sampler
(Phillips et al. 2000; Perks et al. 2014; Smith and Owens
2014). Multiple TIMS should be installed at different loca-
tions (easy to reach throughout the year) with similar water
depths and well-mixed uniform flow. Sediment samples can
be retrieved at different time intervals for apportioning sedi-
ment sources according to specific temporal resolutions.

Sediment is delivered to the aquatic environment as
primary and aggregated particles, but the aggregates
break down during transport due to abrasion and disag-
gregation as a result of turbulence (Droppo 2001). In
general, eroded material is enriched in clay- and silt-
sized particles relative to the original soil. Sorting with-
in the fluvial system, however, could lead to mixtures
of coarse and fine material from a range of sources due

to contrasting transport times of different fractions and
proximity to sediment sources (Fletcher and Muda 1999;
Miller and Miller 2007). It is important to note that the
concentration of suspended sediment tends to increase
with increasing distance from the bank due to an in-
crease in sand-sized materials (Walling et al. 2011).
For the same reason, vertical concentrations of
suspended sediment in fluvial systems tend to increase
with increasing depth. Nevertheless, the choice of sedi-
ment size fraction depends on the characteristics of the
sediment transported out of the catchment and the frac-
tion responsible for any environmental issues (e.g. silta-
tion of salmonid spawning gravels) in question (Bartley
et al. 2014; Collins et al. 2016). Therefore, appropriate
sediment sampling site selection is recommended, with
samples taken at the outlet of the catchment and/or at
key locations across the catchment, to provide a repre-
sentative sediment.

5 FA extraction and carbon and hydrogen isotope
measurement

FAs are typically extracted using a combination of sol-
vents such as chloroform, methanol, hexane and
dichloromethane. Wiesenberg and Gocke (2017) provide
helpful insights into the common procedures of FA ex-
traction and purification for CSSI analyses. To minimize
analytical variability in δ13C-FA values from sample
handling to isotope measurement, the reader is referred
to the recommendations made by Reiffarth et al. (2016).
It is highly advisable to derive a total lipid extract
(TLE) from the same size fractions for both sediment
and source soils to ensure comparison of like-with-like,
since FA concentrations and their δ13C values differ
between soil fractions (Griepentrog et al. 2015).

The choice of extraction method depends on the availabil-
ity of instrumentation (e.g. accelerated solvent extraction).
Fatty acids must be further purified from the complex TLE
to minimise the risk of co-eluting contaminants during CSSI
analysis. It is also important to use halogen-resistant plastic or
glass solid-phase extraction (SPE) columns due to the nature
of the applied solvents. Fatty acids must be derivatised to fatty
acid methyl esters (FAMEs) prior to CSSI analysis, and to that
end, several derivatisation procedures have been proposed in
the literature (de la Fuente et al. 2006; Milinsk et al. 2008;
Ichihara and Fukubayashi 2010). Depending on the applied
purification, FAs can either consist of free extractable FAs or
ester-bound FAs. Isotopic signatures of individual FAs can be
measured using gas chromatograph-combustion-isotope ratio
mass spectrometry (GC-C-IRMS) and gas chromatograph-
thermal conversion-isotope ratio mass spectrometry (GC-
TC-IRMS) for carbon and hydrogen, respectively. The
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addition of a methyl group to produce FAMEs alters the C and
H isotopic signature of FAs, which has to be corrected in order
to obtain the isotopic signature of the original FAs
(Chikaraishi et al. 2004b). To obtain the highest possible ac-
curacy, it is preferable to compare sample and standard within
each chromatogram after handling them as similarly as possi-
ble according to the principle of identical treatment (Werner
and Brand 2001). The GC-C-IRMS or GC-TC-IRMS does not
provide structural information, and identification is solely
based on retention time. It is therefore advisable to confirm
the identity of individual FAs and to check for chromatograph-
ic peak purity during previous gas chromatography-mass
spectrometry.

6 Data analysis using Bayesian mixing models

6.1 Overview and current practice

Stable isotope mixing models use stable isotope data of FAs in
sources and mixture (sediment) to provide quantitative esti-
mates of the proportional contribution of each source to the
sediment. Mixing models originated in the ecological literature,
where they are used, for instance, to quantify proportions of
different food sources in consumer diets (mixture), typically
using bulk stable isotope data but increasingly using other
tracers such as amino acids and FAs (Boecklen et al. 2011;
Parnell et al. 2013; Phillips et al. 2014). At their core, mixing
models are mass balance equations, where the tracer values of
the mixtures are a convex combination of the mean tracer
values of the sources after correcting for non-conservative pro-
cesses (modification of the tracer values in the mixture, ‘trophic
discrimination factor’ in the case of diet studies). In this section,
we highlight characteristics of mixing models pertinent to their
application for CSSI sediment fingerprinting, as thorough re-
views of the development and advantages of Bayesian mixing
models can be found elsewhere (Hopkins and Ferguson 2012;
Parnell et al. 2013).

IsoSource (Phillips and Gregg 2003) is currently the most
commonly applied mixing model for sediment fingerprinting
using δ13C-FAs values (Gibbs 2008; Blake et al. 2012;
Hancock and Revill 2013; Alewell et al. 2016). IsoSource re-
quires a minimum of three sources and two tracers and cannot
accept more than five tracers. It uses a resampling algorithm
and a tolerance term to identify several possible analytical so-
lutions to the mixing system (given a tolerance) and provides a
range of possible proportional contributions. Because each so-
lution is feasible and might be multimodal, researchers are en-
couraged to report the range of proportional contributions of
each source rather than simply reporting the mean or median
(Phillips and Gregg 2003; Gibbs 2008). The original version of
IsoSource does not take differences in concentration into ac-
count, but a modified version has been developed to overcome

these shortcomings (Granek et al. 2009). However, one of the
limitations of IsoSource is that it models mean values of source
and sediment isotopic signature rather than the distribution of
actual values. Additionally, it does not measure uncertainty
quantitatively (Moore and Semmens 2008). Bayesian model-
ling approaches are becoming more popular as a result of re-
cently proposed improvements to linear (e.g. IsoSource) and
Bayesian SIMMs, such as the inclusion of variability, prior
information and sensitivity analyses (e.g. MixSIAR, Stock
and Semmens 2013; IsotopeR, Hopkins and Ferguson 2012).

Bayesian implementations of SIMMs (e.g. MixSIR, Moore
and Semmens 2008; SIAR, Parnell et al. 2010) have seen
increased use in both ecology and sediment fingerprinting
recently since they use a flexible and more statistically sound
likelihood framework (Semmens et al. 2013; Cooper et al.
2014). Most important mixing model improvements devel-
oped since MixSIR/SIAR have been incorporated into
MixSIAR, an open-source R package (Stock and Semmens
2013). Furthermore, these Bayesian SIMMs provide the op-
portunity to implement a hierarchical structure to the data,
whichmight prove to be particularly useful in catchments with
high complexity. Below, we focus on considerations for using
Bayesian SIMMs to perform sediment fingerprinting that is
specific to δ13C-FA data.

6.2 Concentration-dependent SIMMs

The mixing models applied in the majority of previous CSSI
sediment fingerprinting studies did not consider the difference
in relative FA concentrations between the sources (i.e.
concentration-independent models), instead applying a post-
unmixing correction for total tracer concentrations (using the
cumulative tracer, i.e. total FAs concentration, Alewell et al.
2016, or total organic carbon content as a proxy, Gibbs 2008).

The unmixing of sediment samples to determine the pro-
portional contribution of the sources using a SIMM (linear or
Bayesian) is always based on a simple isotopic mixing model.
For one tracer’s isotope and S sources, the mixing model can
be written as follows:

β ¼ ∑S
s¼1δsπs ð1Þ

where β is the isotopic composition of the mixture, δs is the
isotopic composition of source s and πs is the proportional
contribution of the isotopic tracer of source s.

For multiple tracers, this equation can be generalized as:

βi ¼ ∑S
s¼1δn;sπn;s; for n ¼ 1;……;N ð2Þ

and

∑S
s¼1πn;s ¼ 1; for n ¼ 1;……;N ð3Þ
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where the subscript n denotes the different tracers (i.e. dif-
ferent FAs) and the subscript s denotes the different sources.
This results inN × 2 equations that have to be solved for S × N
unknowns (πn,s). The proportional contribution of the tracer n
(πn,s) can be written as a function of the proportional contri-
butions of the sources (fs).

πn;s ¼
f s�Cn;s

∑S
s¼1 f s�Cn;s

ð4Þ

where Cn,s is the concentration of tracer n in source s.
In a concentration-independent mixing model, the N πn,s

are assumed to be a random distribution of a common πs. This
assumption, however, is only correct if the isotopic tracer
composition (i.e. relative concentration of FAs in our case) is

identical for all sources (i.e. Cn;1

∑N
n¼1Cn;1

¼ Cn;2

∑N
n¼1Cn;2

¼ … ¼
Cn;S

∑N
n¼1Cn;S

for all n), which is actually rather an exception than

the rule. In a concentration-dependent model, πn,s in Eq. (2) is

replaced by Eq. (4), leading to N + 1 (i:e:∑S
s¼1 f s ¼ 1Þ equa-

tions for S unknowns (fs).
Although widely used in the CSSI erosion study commu-

nity, concentration-independent models are, in essence, not
correct. We argue that the use of concentration-dependent
models should be standard procedure for future use of CSSI
tracers in erosion studies. The magnitude of the error intro-
duced by using a concentration-independent SIMM followed
by post-mixing correction will vary and might be small in
some cases (e.g. when relative FA concentrations do not vary
much between sources) (Fig. 3c). Nevertheless, we strongly
advocate for the inclusion of readily available FA concentra-
tion data during mixing model formulation. Ignoring FA con-
centrations during this process leads to distortion of the source
contributions (Phillips and Koch 2002; Phillips et al. 2014).

6.3 Recommendations for CSSI sediment fingerprinting

6.3.1 Selection of FAs to use in mixing models

In order for mixing models to successfully apportion source
contributions, the input tracer data needs to be (i) conservative
(i.e. either no isotopic fractionation during transport from
source to sink or predictable isotope fractionation) and (ii)
informative (e.g. they must differentiate between the sources).
The first and most important method of selecting FAs is, log-
ically, based on their biochemistry (i.e. Which organisms pro-
duce it? How recalcitrant is it?) and behaviour in the soil and
sediment environment (i.e. How will it bind to the sediment
particle?). These premises clearly call for the use of saturated
long-chain FAs (see above). After careful consideration of
their biochemistry and behaviour, the simple tests described

below can provide additional guidance on whether to include
or exclude specific FAs.

Mixing models assume that sediment is a homogeneous
mixture of the contributing sources. Therefore, the isotopic
composition of each FA in the sediment should fall within
the range of credibility intervals found for the source soils’
isotopic composition. A bracketing test is a common way of
evaluating this assumption for isotopic compositions mea-
sured in sediment samples (Benstead et al. 2006; Smith et al.
2013; Wilkinson et al. 2013; Brandt et al. 2016). However, a
bracketing test only evaluates extreme values based on the
assumption that any intermediate data points are represented
by the extremes. It does not determine conservative behaviour,
but it does identify samples that are outliers.

Bracketing tests with more than one dimension can be visu-
alized by mixing polygons. For example, the mixing space of
three sources defined by two δ13C-FAs can be plotted as vertices
of a polygon (although the concentration-dependent model may
make the edges somewhat curved rather than straight) and all
sediment samples should ideally be bound within the polygon
(Phillips and Koch 2002; Hopkins and Ferguson 2012).
Sediment samples that are not bound within the polygon indi-
cate either a missing source or non-conservative transport.
Additionally, the mixing space geometry (in two- or three-
isotope systems) can be quantitatively evaluated using a
Monte Carlo simulation of mixing polygons for the point-in-
polygon assumption test (Smith et al. 2013) and has been used
in CSSI sediment fingerprinting (Brandt et al. 2016). Convex
hulls (mixing polygons) can be iterated using the distributions of
the δ13C-FA values of the intended sources. The proportion of
polygons which provides a solution (i.e. meet the point-in-
polygon assumption) is then calculated, providing the quantita-
tive basis for validating mixing space geometry (Smith et al.
2013; Brandt et al. 2016). When there are more than three
tracers, this polygon generalizes to an n-dimensional hyper el-
lipse (Blonder et al. 2014). Transformation of such an ellipse
into the perfect circle, centred around the origin, by linear matrix
algebra using the covariance matrix of the data (the same data
that defines the ellipse) and projection of sediment data (after
transformation in the sameway like ellipse) into the circles helps
to test the point-in-polygon assumption at higher dimensions
(Jackson 2016). However, these approaches still neglect the
concentration effect on the geometry of the mixing space and
thus warrant further research.

Once visualization of the mixing space or bracketing test-
ing is complete, Tukey’s HSD test can be used to identify FAs
that allow for significant differentiation of sources. Optionally,
best FA subsets for differentiation among sources can also be
obtained using the Simulated Annealing Algorithm (SAA).
Using this method, the selected subset (e.g. C22, C26, C32)
can provide the same level of discrimination (Fig. 3b) as all
variables (e.g. C22, C24, C26, C28, C30, C32) do. Detailed ex-
planations of the SAA are available elsewhere (Silva 2001;
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Brusco 2014; Cerdeira et al. 2015). Selection of variables
helps to minimize co-linear δ13C-FAs and reduce multiple
and conflicting solutions. When a selected set of FAs fails to
discriminate potential sources, the sources can be re-defined
either by lumping or splitting them to produce sufficient het-
erogeneity in the isotopic values of FAs among sources
(D'Haen et al. 2012; Sherriff et al. 2015).

6.3.2 Inclusion of prior information and covariates

In general, there is a demand for knowledge on relevant soil
erosion processes in the landscape and the fate of sediment in
the catchment environment (Fox and Papanicolaou 2008;
Ulén et al. 2012). Soil does not erode uniformly across the
entire soil surface due to the ‘patchiness’ of rainfall and epi-
sodic nature of water erosion, which can make substantial
differences in soil erosion severity between different land uses
and between locations within a land use. Additionally, land
use characteristics (e.g. land cover, area) of the catchment will
theoretically have a direct impact on the relative contributions
to sediment. This fact can be used as prior information in
Bayesian mixing models. Prior information is unmeasured
data that is not directly involved in tracing the sources
and originates mainly from catchment characteristics, ex-
pert knowledge and literature on the proportions of land
use. The incorporation of logical and appropriate prior
information into the Bayesian SIMM helps to account
for the full range of source variability and reduces the
uncertainty of the estimates as much as possible.
Furthermore, by incorporating a residual error term in
the Bayesian SIMM (e.g. MixSIAR), the additional
unquantified variation in isotopic signatures between in-
dividual sediments can be represented (i.e. deviation of
the observed value from the true value) and the variability
of the isotopic mixing system in the sediment can be
captured (Semmens et al. 2009; Stock and Semmens
2016). Therefore, CSSI sediment fingerprinting can be

improved by formulating mixing models that take prior
information and residual error into account and incorpo-
rate covariates and covariance from the sources and sed-
iment samples (e.g. base flow vs. episodic runoff sedi-
ment, seasonal differences in erosion and sediment gener-
ation due to rainfall intensity and land cover change)
(Table 2). The cross-isotopic tracer covariance is
parameterised within Bayesian mixing model through a
single correlation parameter for each source (Hopkins
and Ferguson 2012; Parnell et al. 2013). Moreover,
MixSIAR can incorporate covariates as random or fixed
effects, and we recommend their use when there is reason
to believe that the inclusion of covariates will influence
the outcome of sediment source apportionment.

6.4 Research needs

The issue of how to statistically select tracers for inclusion in
mixing models is still unsettled. Bracketing tests can identify
non-conservative tracers, but it is possible for a tracer to be
non-conservative and still pass the test. Simulation studies
should shed light on the impact of including more or fewer
tracers that may or may not be conservative or informative.
Rainfall simulation experimental tests can provide informa-
tion on the conservativeness of CSSI tracers during the sedi-
ment generation process. However, it is critical to understand
the effects that residence time and storage of different sedi-
ments size fractions have on the δ13C-FAs in the catchment.

Another future direction for Bayesian mixing models is to
deal with larger and more complex catchments through the
estimation of sediment mixing at the sub-catchment level
(Fig. 2). We envision extended mixing models that are able
to distinguish the source contributions within each sub-catch-
ment, contributions of each sub-catchment to the overall
catchment and the source contributions to the overall catch-
ment. In this type of hierarchical network model, the geo-
graphical location of potential sediment sources with respect

Table 2 MixSIAR terminology
adapted for sediment
fingerprinting

Term Description

Process
error

Within each source, tracer values of replicate samples may vary due to local differences in
erosion rate, rainfall intensity, etc. Process error is the expected amount of variability in
sediment tracer values that results from this within-source variability in tracer values

Residual
error

Unexplained variability in sediment tracer values, beyond that accounted for by process error or
covariates (fixed/random effects)

Fixed effect Source proportions in the sediment deviate from their mean in a predictable way, by a categorical
covariate. Examples: base vs. high flow events, seasonal differences in rainfall intensity and
land cover

Random
effect

As for fixed effects, the source proportions in the sediment deviate from their mean by a
categorical covariate. However, the researcher is less interested in the proportions for each
level and considers the covariate a ‘nuisance’ variable, but still wants to account for the
variation in tracer values due to the covariate. Must have >3 levels and replicate sediment
samples within level. Example: year
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to sediment sampling sites should always be considered when
designing sampling plans and interpreting the model results.

7 Conclusions and perspectives

Stable carbon isotopic composition of plant-derived FAs as-
sociated with soil and sediment are a powerful tool for pro-
viding detailed insights into the contribution of specific land
uses to sediment loads at the catchment scale. However, the
wider adoption of CSSI fingerprinting for sediment source
apportionment is hampered by the fact that clear guidelines
that deal with a number of methodological constraints are
missing: (i) source and sediment sampling strategies, (ii) FA
extraction and selection and (iii) formulation of SIMM inputs.

First, it must be noted that efforts in analytics or modelling
cannot overcome poor and/or non-representative sampling.
Therefore, the collection of spatially integrated random com-
posite samples to obtain representative sources and the instal-
lation of TIMS in streams at multiple locations across a catch-
ment to collect suspended sediment are essential to maximize
the effectiveness of CSSI fingerprinting approaches. Second,
we particularly recommend the use of saturated, long-chain
(>20 carbon atoms) FAs from the same size fraction of source
soil and sediment due to their exclusive plant origin, conser-
vativeness, strong interaction with soil minerals and ensuring
comparison of ‘like-with-like’. Third, stable isotope mixing
models cannot estimate reliable contributions of sediment
sources if the model applied does not account for differences
in FA concentrations among sources. Therefore, the use of
concentration-dependent mixing models should be standard
procedure in sediment fingerprinting studies. In addition, we
strongly advise the use of Bayesian mixing models (e.g.
MixSIAR) over more basic models such as IsoSource due to
their greater flexibility through the use of informative priors
and their ability to incorporate a residual error term, which
enables them to better cope with CSSI variability.

CSSI fingerprinting can provide key information for
targeted erosion management, but there is a need for further
improvement in source discrimination and SIMM formula-
tion. There exists no robust statistical approach to formally
test for missing sources and conservativeness of tracers.
Indeed, even if the δ13C-FAs fall within the source mixing
space, it is still possible that δ13C-FA of sediment may be
biased by missing sources or non-conservative transport.
Therefore, it is equally important to have adequate informa-
tion on (i) (hillslope) system under investigation (i.e. expert
decision on potential erosion sources, covariates effect on the
relative contributions of sediment source), (ii) sediment cas-
cade connectivity and (iii) assumptions and limitations of
Bayesian SIMMs. Sediment fingerprinting might be further
strengthened by adding the δ2H of FAs as complementary
isotope tracer capable of discrimination among sources in high

resolution. Therefore, coupling of Bayesian SIMMs and dual
isotopes (δ13C and δ2H) of FAs could be an extremely useful
addition to the rapidly growing roster of techniques available
for sediment fingerprinting. Additionally, as MixSIAR con-
tinues to advance, we anticipate the incorporation of erosion
processes (e.g. sheet, rill and gulley erosion) responsible for
mobilizing sediment within a single source and within hierar-
chical structures in the drainage basins. The CSSI sediment
fingerprinting methodology described in this paper, as well as
the expanding number of laboratories capable of CSSI analy-
ses, will definitely contribute to the mitigation of erosion and
sediment-related problems in the context of land use and cli-
mate change.
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