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Abstract 25 

Spatiotemporal predictions of bycatch (i.e. catch of non-targeted species) have shown promise as 26 

dynamic ocean management tools for reducing bycatch. However, which spatiotemporal model 27 

framework to use for generating these predictions is unclear. We evaluated a relatively new 28 

method, Gaussian Markov random fields (GMRFs), with two other frameworks, generalized 29 

additive models (GAMs) and random forests. We fit geostatistical delta-models to fisheries 30 

observer bycatch data for six species with a broad range of movement patterns (e.g. highly 31 

migratory sea turtles vs. sedentary rockfish) and bycatch rates (percent of observations with non-32 

zero catch, 0.3-96.2%). Random forests had better interpolation performance than the GMRF and 33 

GAM models for all six species, but random forests performance was more sensitive when 34 

predicting data at the edge of the fishery (i.e. spatial extrapolation). Using random forests to 35 

identify and remove the 5% highest bycatch risk fishing events reduced the bycatch-to-target 36 

species catch ratio by 34% on average. All models considerably reduced the bycatch-to-target 37 

ratio, demonstrating the clear potential of species distribution models to support spatial fishery 38 

management. 39 

 40 

Keywords: fisheries bycatch, dynamic ocean management, spatiotemporal model, species 41 
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Introduction 46 

Bycatch—catch of non-targeted species—occurs in nearly every commercial and recreational 47 

fishery, and in many cases is a serious environmental and economic problem (Alverson et al. 48 

1994; Davies et al. 2009; NMFS 2016). For high-profile protected species such as loggerhead sea 49 

turtles (Caretta caretta), even extremely low bycatch rates can result in population impacts and 50 

fisheries closures (Howell et al. 2015). Some species sustain highly valuable targeted fisheries 51 

but are considered bycatch in others, resulting in litigation and economic losses (e.g. chinook 52 

salmon bycatch in the Alaska pollock fishery, Ianelli and Stram 2015). Bycatch of undesired and 53 

unprotected species is also concerning because it reduces fishing efficiency and threatens 54 

ecosystem biodiversity (Boyce 1996; FAO 1995; Kelleher 2005). Thus, for a variety of reasons, 55 

the fishing community is interested in tools to reduce bycatch. 56 

One such tool are maps of relative bycatch risk (e.g. probability or density) produced by 57 

species distribution models (SDMs). SDMs have seen rapid development in the last decade to 58 

meet critical conservation and resource management needs to understand how species 59 

distributions change in time and space (Parmesan and Yohe 2003; Sumaila et al. 2011; Pinsky et 60 

al. 2013). Accordingly, there is now a wide range of SDMs available to ecologists and fisheries 61 

scientists for fitting data on species presence/absence and abundance (Phillips et al. 2006; Illian 62 

et al. 2013; Conn et al. 2015; Golding and Purse 2016). SDMs have shown promise as tools for 63 

dynamic ocean management (DOM), which adapts to changing biological, oceanographic, or 64 

economic conditions faster than traditional, static, time and area closures (Breivik et al. 2016; 65 

Dunn et al. 2016; Eguchi et al. 2017; Hazen et al. 2016; Howell et al. 2008, 2015; Lewison et al. 66 

2015). It is not clear, however, what SDM framework is most appropriate to use to support such 67 

tools. Further, because bycatch species vary from commonly to rarely caught, bycatch datasets 68 
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offer a wide range of occurrence rates and densities. Thus, in addition to providing guidance for 69 

spatial bycatch management, large bycatch datasets are excellent testbeds for evaluating SDM 70 

performance more generally. 71 

Species distribution models (SDMs) 72 

SDMs can be coarsely divided into parametric, semiparametric, and nonparametric 73 

approaches. Generalized linear models (GLMs) are one of the simplest parametric approaches 74 

used to understand species distributions and their relationships with biotic and abiotic covariates 75 

(Venables and Dichmont 2004). GLMs predict the response variable, Yi (species 76 

presence/absence or abundance at location i), by specifying a probability distribution and link 77 

function: 78 

𝑌𝑖 ~ distribution with mean 𝜇𝑖, 𝑔(𝜇𝑖) =  𝜂𝑖, 79 

with linear predictor 80 

𝜂𝑖 =  𝐗𝐢𝛃, (1) 81 

where Xi is a vector of covariate values for location i, and β is a vector of coefficients to be 82 

estimated. GLMs can permit nonlinear relationships between the covariates and response by 83 

including transformations of the covariates, e.g. polynomial terms 𝜂𝑖 =  𝛽0 +  𝛽1𝐗𝟏𝐢 +  𝛽2𝐗𝟏𝐢
𝟐 +84 

 𝛽3𝐗𝟏𝐢
𝟑 + ⋯, or by discretizing continuous covariates and treating them as categorical variables. 85 

Generalized additive models (GAMs) extend the GLM framework by allowing the linear 86 

predictor to include smooth functions of the covariates (Guisan and Thuiller 2005; Wood 2017). 87 

GAMs are often referred to as semiparametric, since the smoothers do not have a specified 88 

functional form but do have associated parameters that are estimated using penalized likelihood 89 

(Wood 2011; Guélat and Kéry 2018). The ability of GAMs to incorporate complex, non-linear 90 

covariate effects, as well as improvements to computing power and software, has led to their 91 



 

 

 

 

 

Page 5 

wide adoption in fisheries and ecology in the last decade (Becker et al. 2014; Leathwick et al. 92 

2006; Li and Pan 2011; Watson et al. 2009). Extending the linear predictor in Equation 1 to 93 

include a 2-dimensional spline, 𝑓(), on the geographical coordinates of location i, si, specifies a 94 

GAM: 95 

𝜂𝑖 =  𝐗𝐢𝛃 + 𝑓(𝐬𝐢). (2) 96 

Equation 2 is estimated by penalized likelihood maximization, which balances smoothness and 97 

fit to the data by penalizing the curvature (i.e. integral of the squared second derivative) of 𝑓(𝐬𝐢) 98 

(Wood 2017). Kammann and Wand (2003) refer to Equation 2 as a ‘geoadditive’ model, and have 99 

shown that this is mathematically equivalent to explicitly modeling spatial correlation with 100 

random effects, u: 101 

𝜂𝑖 = (𝐗𝛃 + 𝐙𝐮)𝑖 (3) 102 

(Diggle et al. 1998; Kneib et al. 2008; Péron et al. 2011; Fahrmeir et al. 2013; Guélat and Kéry 103 

2018). When the spatial random effects are assumed to follow a zero-mean multivariate normal 104 

distribution, Equation 3 can be written as: 105 

𝜂𝑖 = 𝐗𝐢𝛃 +  𝛆(𝐬𝐢),

𝛆(𝐬) ~ MVN(0, 𝚺),
(4) 106 

where ε is a Gaussian field (Kneib et al. 2008). Analogous to how the curvature of the spline is 107 

penalized when estimating the GAM, the correlation function that defines Σ acts as a penalized 108 

spatial smoother in the Gaussian field model—nearby locations are more highly correlated, and 109 

thus more smoothed, than distant locations (Fahrmeir et al. 2013). Gaussian fields are attractive 110 

because they directly model spatial correlation, but applications have historically been limited to 111 

smaller datasets because inverting the covariance matrix, Σ, makes them computationally intense 112 

(Lindgren et al. 2011). In summary, both the GAM and Gaussian field model account for spatial 113 

autocorrelation not explained by environmental covariates, are semiparametric, mathematically 114 
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equivalent, and typically fit using penalized likelihood that optimizes spatial smoothing. 115 

 Gaussian fields are defined in continuous space but can be approximated by discrete 116 

Gaussian Markov random fields (GMRFs, Lindgren et al. 2011). GMRFs have increasingly been 117 

used to model species distributions as advances in computing power and software 118 

implementation have allowed ecologists to apply them to large datasets. Among other 119 

advantages, the GMRF approach can be implemented by integrated nested Laplace 120 

approximation, which is faster than other methods of Bayesian inference (i.e. Markov chain 121 

Monte Carlo) and allow GMRF approximations of Gaussian fields to be computationally feasible 122 

(Rue et al. 2009). GMRF models have shown promise in assessing relationships between habitat 123 

and distribution (Illian et al. 2013), the effects of interspecific relationships such as density 124 

dependence (Thorson et al. 2015c), as well as the relationships between multiple co-occurring 125 

taxa (Ward et al. 2015). From a quantitative standpoint, GMRF models have been shown to 126 

estimate population abundance trends with greater precision and accuracy compared to non-127 

spatial models (Thorson et al. 2015b). 128 

Clearly, GMRFs are intimately related to GAMs, since GMRFs approximate the 129 

Gaussian field model (Eqn. 4), which is an alternative parameterization of the GAM in Equation 130 

2. The spatial smoothing terms for both GAMs and GMRFs can be defined on a sphere or differ 131 

according to spatial direction (anisotropy can be included in GAMs by using tensor product 132 

smooths, and Σ can be both non-stationary and anisotropic in GMRFs). GAMs and GMRFs 133 

differ, however, in two regards. First, the spatial smoothing term appears as a mean trend for 134 

GAMs and as a covariance matrix for GMRFs. This distinction may not be important for 135 

modelling species distributions, and researchers may prefer the method that reflects their view of 136 

how spatial autocorrelation arises in the problem at hand. For instance, GMRFs would be the 137 
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more natural framework if the spatial variation remaining after including environmental 138 

covariates is considered random. Second, and more importantly, the different parameterizations 139 

lead to different estimation methods and software implementations. Since spatial models for 140 

large datasets contain many parameters, numerically efficient implementations are crucial 141 

(Fahrmeir et al. 2013). Several R packages fit GAMs, the most popular being ‘mgcv,’ which uses 142 

generalized cross-validation to estimate smooth terms by default (Wood 2017). GMRFs can be 143 

fit via ‘INLA,’ which uses a Bayesian framework and estimates models by integrated nested 144 

Laplace approximation (Lindgren and Rue 2015). In theory, ‘mgcv’ and ‘INLA’ should be quite 145 

similar. In practice, however, differences in approximation methods, runtime, convergence 146 

criteria, ease of use, and default settings may impact model predictions. 147 

 Most nonparametric approaches ecologists use to model species distributions have 148 

evolved from machine learning algorithms (Hastie et al. 2009; Olden et al. 2008). These data-149 

driven approaches include random forests (RF, Breiman 2001; Cutler et al. 2007), MaxEnt 150 

(Phillips et al. 2006; Phillips and Dudík 2008), and support vector machines (Drake et al. 2006). 151 

In this analysis we highlight RF because 1) data in our application—fisheries bycatch—contain 152 

true absences, whereas MaxEnt is designed for presence-only data, and 2) RF is widely used and 153 

has shown good predictive performance in SDM testing (Prasad et al. 2006; Marmion et al. 154 

2009; Scales et al. 2016). The RF algorithm predicts the response by constructing m regression 155 

(or classification) trees and averaging their predictions (Breiman 2001). Each individual tree 156 

begins with all observations and then iteratively partitions the data by splitting along one 157 

covariate (e.g. depth > 100 m versus depth ≤ 100 m), choosing the covariate and split point that 158 

minimizes the sums of squares error at each node (where the predicted response at each node is 159 

the mean of observations within the node, Breiman et al. 1984). The process continues until each 160 
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terminal node contains less than a specified number of observations. Individual trees are simple 161 

and computationally cheap but are also unstable (i.e. sensitive to slight alterations in the data) 162 

and sub-optimal at prediction (i.e. they are “weak learners”), because they only allow rectangular 163 

partitions of covariate space. The RF algorithm increases predictive performance by reducing the 164 

correlation between trees, which is accomplished via two processes: 1) fitting each tree to a 165 

bootstrap sample of the original data, and 2) at each split, randomly selecting a subset of 166 

covariates to consider (Kuhn and Johnson 2013). This works because reducing the correlation 167 

between individual trees reduces the correlation of their errors, which therefore reduces the 168 

predictive error of their average, the RF estimate. 169 

Random forests are popular because they are simple to use (few parameters to tune and 170 

the default values work well in most cases), robust to the inclusion of many non-informative 171 

covariates generate accurate predictions, designed to not overfit, and seamlessly accommodate 172 

missing data (Biau and Scornet 2016). Compared to parametric and semiparametric models, RF 173 

will often have better out-of-sample (i.e. cross-validated) prediction performance due to their 174 

ability to estimate more complex patterns, as non-linearity and interactions are inherent in their 175 

construction (Elith and Leathwick 2009). However, this data-driven complexity does come at the 176 

cost of model interpretability, and this is one of the main factors limiting the adoption of RF—177 

and machine learning methods more generally—by ecologists (Olden et al. 2008). Three other 178 

disadvantages of RF are the difficulty of generating uncertainty estimates with well-understood 179 

properties, analyzing model diagnostics, and specifying constraints on model fit (e.g., we may 180 

wish yearly estimates to be independent, which can be specified in parametric models). 181 

Study objectives 182 

The primary objective of this paper is to compare the performance of GAMs, GMRFs 183 
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and RF in a predictive framework using cross-validation (Kuhn and Johnson 2013; Roberts et al. 184 

2017). There has been an increased emphasis in ecology on evaluating and selecting models 185 

based on their ability to predict out-of-sample data (Hooten and Hobbs 2015), and one of the 186 

advantages of this approach is that nonparametric and parametric models can be compared (Ward 187 

et al. 2014). While each of these model frameworks have individually been applied to understand 188 

spatiotemporal trends in fisheries bycatch (GAMs: Becker et al. 2014; Hazen et al. 2016; 189 

McCracken 2004; Watson et al. 2009; GMRFs: Breivik et al. 2016, 2017; Cosandey-Godin et al. 190 

2015; RFs: Carretta et al. 2017; Eguchi et al. 2017; Pons et al. 2009), their predictive 191 

performance has not been tested in a comparative study. 192 

Our next objective is to evaluate the utility of using SDM predictions of bycatch risk as a 193 

tool to reduce bycatch in fisheries. Beyond abstract performance metrics, we compare the 194 

models’ capabilities to reduce the bycatch-to-target species catch ratio, create spatial bycatch risk 195 

maps, and estimate effects of covariates. 196 

The final objective of our analysis is to evaluate model transferability, the ability to 197 

extrapolate, or predict beyond the range of observed data. Traditional cross-validation only 198 

measures a model’s ability to interpolate, i.e. estimate values within the range of observations, 199 

because it randomly chooses data to withhold for testing. SDMs that are more data-driven and 200 

complex have been shown to have better interpolation performance but be worse at spatial 201 

extrapolation (Araújo and Rahbek 2006; Heikkinen et al. 2012; Randin et al. 2006). In other 202 

words, one model may have higher predictive performance in the core fishing area with abundant 203 

data, yet underperform other models in areas with sparse sampling coverage. Since we wish to 204 

evaluate using SDM predictions of bycatch risk as a spatial management tool, it is important to 205 

assess how sensitive the predictions are to spatial location. Predictions in areas with few data are 206 
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more sensitive to model misspecification and overfitting, and therefore caution is especially 207 

warranted for complex, nonparametric approaches such as RF (Merow et al. 2014). 208 

Methods 209 

Fisheries observer data 210 

Collecting reliable bycatch data depends on fisheries observer programs, where on-board 211 

observers enumerate and record the species caught (as well as fishing location, gear type, time, 212 

and other relevant information). To explore the performance of species distribution models 213 

across taxa, we used two datasets from United States fisheries observer programs in the Pacific 214 

Ocean with high observer coverage. The first dataset was from the West Coast Groundfish 215 

Observer Program (WCGOP) at the Northwest Fisheries Science Center (NWFSC, Bellman et al. 216 

2010). The WCGOP dataset contained records of 42 786 commercial bottom trawls from 2003-217 

2012 off the west coast of the USA, primarily targeting groundfish such as Dover sole 218 

(Microstomus pacificus), thornyheads (Sebastolobus spp.), sablefish (Anoplopoma fimbria), and 219 

rockfish (Sebastes spp., Fig. 1a). Observers recorded haul duration, location, date, time, depth, 220 

gear type, and catch (which includes at-sea discarded bycatch; for details see NWFSC 2016). 221 

Observer coverage was approximately 20% from 2003-2010 under limited access management, 222 

with 100% coverage starting in 2011 with the transition to an individual fishing quota (IFQ) 223 

system. In the pre-IFQ era, fishermen were not permitted to land rebuilding species (i.e. 224 

populations declared overfished with management plans to rebuild to sustainable levels), so we 225 

defined bycatch as only at-sea discards. Under the IFQ system fishermen can land a low quota of 226 

rebuilding species, so we considered bycatch to be the sum of discarded and retained catch for 227 

non-target species. 228 

 The second dataset was from the Hawaii longline (HILL) fishery, monitored by the 229 
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Pacific Islands Regional Observer Program (PIROP 2014), which has recorded fishing location, 230 

date, time, sea surface temperature (SST), gear characteristics, and catch of longline sets from 231 

1994-2014. The Hawaii longline fleet is divided into two sectors, one targeting tuna (Thunnus 232 

spp.) and the other swordfish (Xiphias gladius), with distinct gear configurations and 233 

spatiotemporal effort patterns, both of which affect interaction rates with bycatch species (Li and 234 

Pan 2011). We modeled 16 714 observations from the shallow-set swordfish fishery in 1994-235 

2001 and 2005-2014 (Fig. 1b), distinguishing between sets targeting swordfish and tuna by the 236 

number of hooks between surface floats (following Li and Pan 2011). Concerns over bycatch of 237 

protected species, particularly of loggerhead (Caretta caretta) and leatherback sea turtles 238 

(Dermochelys coriacea), motivated the closure of the swordfish fishery from 2001 to 2004. This 239 

led to two important differences between the data from 1994-2001 and 2005-2014. First, sea 240 

turtle bycatch rates have been an order of magnitude lower in the later period, the result of 241 

stricter regulations and modifying hooks (J to circle hooks) and bait types (squid to fish; Gilman 242 

et al. 2007). Second, observer coverage increased from roughly 5% to 100% (Howell et al. 243 

2008).  244 

 Model performance may be linked to species’ movement patterns, because species that 245 

move less (or whose movement patterns do not change in time) may not need a spatiotemporal 246 

model. Instead, a time-constant spatial model may be adequate. To ascertain whether differences 247 

in SDM performance were related to movement pattern or bycatch rate (i.e. % observations with 248 

non-zero catch), we selected three bycatch species from each dataset: blue shark (Prionace 249 

glauca), loggerhead sea turtle, and leatherback sea turtle from the Hawaii longline fishery, and 250 

Pacific halibut (Hippoglossus stenolepis), darkblotched rockfish (Sebastes crameri), and 251 

yelloweye rockfish (Sebastes ruberrimus) from the West Coast groundfish trawl fishery. These 252 
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species widely differ in their bycatch rates (96.2%, 0.7%, 0.3%, 28.9%, 17.9%, and 1.4%, 253 

respectively), habitat preferences, and movement patterns. For instance, rockfish are relatively 254 

sedentary and closely associated with rocky bottom habitat, whereas halibut exhibit seasonal and 255 

long-distance migrations (Skud 1977; Gunderson 1997). In contrast to the groundfish, blue 256 

sharks and sea turtles inhabit the open ocean and range much more widely (Benson et al. 2011; 257 

Kobayashi et al. 2008; Nichols et al. 2000). 258 

 While both datasets include periods with 100% observer coverage, they also span periods 259 

with partial coverage. This is relevant since the models assume that the data represent a random 260 

sample of the studied fishery, i.e. each fishing event has an equal probability of being observed. 261 

For several reasons, it is difficult for observer programs to achieve random sampling: a list of 262 

trips and their departures often does not exist far in advance, certain vessels may not be able to 263 

accommodate observers, observers may not always be available, and fisher behavior can change 264 

when observers are on board (Hall 1999; Liggins et al. 1997; McCracken 2004). The WCGOP 265 

data from years with 20% coverage are likely to be representative of the fishery, because the 266 

WCGOP stratified sampling by port group, vessel, and 2-month blocks with the goals of 267 

sampling all vessels for two months in each year and discouraging changes to fishing behavior 268 

when observers were on-board (NWFSC 2006). It is less likely that this was true for the 1994-269 

2001 HILL data. Nevertheless, we included data from periods with partial coverage because 270 

there were very few observations of non-zero catch for rarely encountered species in the years 271 

with full coverage (yelloweye rockfish: 38, loggerhead turtle: 89, leatherback turtle: 82), and in 272 

many cases, bycatch of these ‘rare-event’ species are often of highest management concern 273 

(Martin et al. 2015). 274 

Environmental covariates 275 
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In addition to the locations of observed fishing, we considered several covariates that may help 276 

explain the likelihood of bycatch events. For the WCGOP dataset, we included fishing depth, day 277 

of year, sea surface temperature (SST) anomaly, distance to rocky habitat, size of nearest rocky 278 

patch, predicted occurrence from survey data, and whether the trawl occurred in or near a 279 

Rockfish Conservation Area (RCA). RCAs are large areas along the U.S. West Coast closed to 280 

fishing designed primarily to reduce bycatch of overfished rockfish, such as two of the species 281 

we considered. RCA boundaries have changed by and within years, and are defined by latitude, 282 

date, and depth (NOAA Fisheries West Coast Region 2015). Trawls were determined to be inside 283 

or outside of an RCA based on the trawl date, average position of trawl start and end, and bottom 284 

depth (calculated via bathymetry from NOAA National Centers for Environmental Information 285 

2015). We included linear and quadratic terms for fishing depth and SST anomalies following 286 

Shelton et al. (2014). Depth was recorded by on-board observers, while SST anomalies were 287 

measured via satellite. For each trawl, we collected daily SST anomalies on a 0.25º grid and used 288 

bilinear interpolation to create SST anomalies corresponding to each trawl location 289 

(http://www.esrl.noaa.gov/psd/, Reynolds et al. 2007). Rocky habitat data were from NMFS 290 

(2013), calculated as per Shelton et al. (2014). Finally, we used the above covariates to fit a 291 

geostatistical binomial GLMM to fisheries-independent trawl survey data (Bradburn et al. 2011, 292 

modeled as in Shelton et al. 2014), and applied this model to predict bycatch occurrence at the 293 

fishing times and locations in the observer dataset. These survey-predicted occurrence 294 

probabilities were included as another linear covariate. All environmental covariates were 295 

centered before model estimation. 296 

 The only available environmental covariate for the HILL dataset was observer-recorded 297 

SST, and therefore we fit the HILL models with covariates of standardized SST, SST2, and day of 298 
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year. 299 

Statistical models 300 

As is common for species distribution data, five of the six species exhibited large proportions of 301 

zero catches. We followed the hurdle- or delta-model approach to this complication, which is 302 

commonly applied in ecology and fisheries (Pennington 1983; Maunder and Punt 2004). Delta-303 

models separate the observed catches, Yi, into two processes: a ‘binomial’ component for the 304 

probability of non-zero catch, πi, and a ‘positive’ component for the mean catch density given the 305 

catch is non-zero, μi:  306 

𝑍𝑖  ~ Bernoulli(𝜋𝑖)

𝑌𝑖 ~ 𝑍𝑖  ℎ(𝜇𝑖)
(5) 307 

where Zi is a binary variable that equals 1 if the species was caught and 0 if it was not, and h() is 308 

a distribution to be specified (e.g. lognormal, gamma). Splitting the modeling into these two 309 

components can be advantageous because different mechanisms may affect one component but 310 

not the other (e.g. a habitat quality covariate may be a significant predictor of catch rate, but not 311 

occurrence). 312 

We applied a total of eight delta-models with varying spatial structure to each of the six 313 

species included in our analysis (Table 1). Bycatch of yelloweye rockfish, loggerhead turtles, and 314 

leatherback turtles were extremely rare events (0.3-1.4% non-zero observations) with too few 315 

multiple-individual catches to meaningfully fit the positive component. All analyses were 316 

conducted using R v3.4.1 (R Core Team 2017), with the following libraries: ‘mgcv’ was used to 317 

implement GLMs and GAMs (v1.8-17, Wood 2017); 'randomForest' (v4.6-12, Liaw and Wiener 318 

2002), 'DMwR' (v0.4.1, Torgo 2010), and 'forestFloor' (v1.9.5, Welling et al. 2016) were used to 319 

fit RFs; and ‘INLA’ was used to fit the GMRF models (v0.0-1485844051, Lindgren and Rue 320 

2015). We assessed model fit with plots of covariate-response relationships, predicted versus 321 
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observed response in out-of-sample data, spatial residual maps, and spatial correlograms 322 

(Moran’s I, package ‘ncf’ v1.2-5, Bjørnstad and Falck 2001). Code to fit each of the models is 323 

provided at https://github.com/brianstock/spatial-bycatch. 324 

Our first model was a delta-GLM with linear and quadratic effects of the environmental 325 

covariates (which are intrinsically spatially correlated), but without any spatial terms—neither 326 

geographic coordinates nor spatial autocorrelation for residual errors. As in Guélat and Kéry 327 

(2018), the delta-GLM served as a baseline that allowed us to evaluate the value of adding 328 

spatial terms in the subsequent models, which were fit using the same covariates and only differ 329 

in how they include spatial information. The delta-GLM fits the observed bycatch in fishing 330 

event i, Yi, as in Eqns. 1 and 5, with binomial component determining the probability of non-zero 331 

bycatch, πi: 332 

𝑍𝑖 ~ Bernoulli(𝜋𝑖),
logit(𝜋𝑖) =  𝐗𝐢𝛂,

(6) 333 

and positive component for the mean catch density given the catch is non-zero, μi: 334 

𝑌𝑖 ~ 𝑍𝑖  Gamma(𝜇𝑖, 𝑘),

log(𝜇𝑖) =  𝐗𝐢𝛃.
(7) 335 

where Xi is a vector of covariate values for location i, α and β are vectors of coefficients to be 336 

estimated, and k is the shape parameter of the gamma distribution. The gamma distribution is 337 

appropriate for positive, right-skewed data, and therefore is commonly used in the positive 338 

component of delta-models for fisheries catch (Lecomte et al. 2013; Stefánsson 1996). While we 339 

would not expect the GLM to outperform the models with explicit spatial terms, it is possible 340 

that the (spatially-structured) environmental covariates could explain most of spatial structure in 341 

the response. In that case, including spatial terms in the model (i.e. a 2-d spline as in Eqn. 2 or 342 

covariance matrix as in Eqn. 4) would be unnecessary. 343 
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We fit two delta-GAM models that extend Eqns. 6 and 7 by adding a 2-dimensional 344 

spline, 𝑓(), on the geographical coordinates of location i, si, to both the binomial and positive 345 

components, as in Eqn. 2:  346 

𝑍𝑖 ~ Bernoulli(𝜋𝑖),

logit(𝜋𝑖) =  𝐗𝐢𝛂 + 𝑓𝑍(𝐬𝐢),

𝑌𝑖 ~ Gamma(𝜇𝑖, 𝑘),

log(𝜇𝑖) =  𝐗𝐢𝛃 + 𝑓𝑌(𝐬𝐢).

(8) 347 

The first, “GAM-CONSTANT,” includes one 2-d spline constant across years, with an offset 348 

(fixed effect) for each year. This allows the mean bycatch probability and density to vary 349 

temporally and spatially, but in the same pattern each year. The second, “GAM-YEAR,” fits an 350 

independent 2-d spline for each year, which allows the spatial pattern to vary between years 351 

(Table 1). 352 

 As for the GAMs, we fit two delta-GMRF models which extend Eqns. 6 and 7 by 353 

estimating the covariance between observed locations, si, as in Eqn. 4: 354 

𝑍𝑖 ~ Bernoulli(𝜋𝑖),
logit(𝜋𝑖) =  𝐗𝐢𝛂 +  𝛆𝐙(𝐬𝐢),

𝛆𝐙(𝐬) ~ MVN(0, 𝐐𝐙
−𝟏),

𝑌𝑖 ~ Gamma(𝜇𝑖, 𝑘),

log(𝜇𝑖) =  𝐗𝐢𝛃 + 𝛆𝐘(𝐬𝐢),

𝛆𝐘(𝐬) ~ MVN(0, 𝐐𝐘
−𝟏),

(9) 355 

where both QZ
-1 and QY

-1 are defined to approximate stationary, isotropic Matérn covariances, 356 

Cov(𝐬𝟏, 𝐬𝟐) =  
𝜎2

2𝜈−1Γ(𝜈)
(𝜅‖𝐬𝟏 − 𝐬𝟐‖)𝜈𝐾𝜈(𝜅‖𝐬𝟏 − 𝐬𝟐‖), 357 

Kν is the modified Bessel function of the second kind and order ν > 0, κ is the spatial scale 358 

parameter, and 𝛆𝐙() and 𝛆𝐘() represent the estimated spatial fields using random effects. We used 359 

the default Matérn smoothness, ν = 1, and priors on parameters as implemented in R-INLA 360 

(Lindgren and Rue 2015). Analogous to the GAM-CONSTANT and GAM-YEAR models, we fit 361 
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a “GMRF-CONSTANT” model with one random field constant across all years, and a “GMRF-362 

YEAR” model with a random field estimated for each year (Table 1). As for GAM-CONSTANT, 363 

the GMRF-CONSTANT model includes fixed effect terms for each year, which allow for an 364 

increase or decrease in the mean bycatch probability and density for each year while assuming 365 

the spatial pattern is constant across years. The GMRF-YEAR model uses the simplest 366 

spatiotemporal option in R-INLA, ‘exchangeable,’ which refers to the spatiotemporal structure—367 

the random fields in all years are uniformly correlated (as opposed to an autoregressive 368 

spatiotemporal structure where nearby years are more correlated than distant years). 369 

 To include spatiotemporal effects in RFs, we added year (treated as a factor), latitude, and 370 

longitude as covariates. For the positive component of the delta-model, we fit only one RF 371 

model: “RF-BASE,” following the original RF algorithm as described by Breiman (2001) and 372 

implemented in the ‘randomForest’ R package (Liaw and Wiener 2002). For the binomial 373 

component, we also fit two modifications to the original RF algorithm designed to improve 374 

performance on imbalanced class data (i.e. proportions of 0s and 1s very unequal), because 375 

several species showed strong class imbalance (e.g., yelloweye rockfish had 99.7% tows with 376 

zero catch and only 0.3% tows with non-zero catch). Training a RF on such severely imbalanced 377 

class data tends to produce models that predict the majority class well but performs poorly on the 378 

minority class (Kuhn and Johnson 2013). The first approach was to down-sample the majority 379 

class observations (e.g. 0s, tows with zero catch for yelloweye rockfish) when training the RF 380 

such that each tree used a stratified bootstrap sample of the data with equal numbers of majority 381 

and minority (e.g. 1s, tows with non-zero catch for yelloweye rockfish) class observations. We 382 

implemented down-sampling in the “RF-DOWN” model, setting the sample size equal to one-383 

sixth the number of minority class observations. The second approach, “RF-SMOTE” (Synthetic 384 
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Minority Over-sampling Technique, Chawla et al. 2002), combined down-sampling of the 385 

majority class with over-sampling of the minority class. Simply over-sampling the minority class 386 

with replacement overfits the RF to the specific observed minority data and typically does not 387 

significantly improve prediction of the minority class. Instead, SMOTE creates synthetic 388 

minority class samples by generating random linear combinations of nearby observed minority 389 

samples, i.e. if X1 and X2 are nearest neighbors with X1 = {SST1, Lat1, Lon1} and X2 = {SST2, 390 

Lat2, Lon2}, draw p from Uniform(0,1) and create Xsyn = {p(SST1 – SST2) + SST2, p(Lat1 – Lat2) 391 

+ Lat2, p(Lon1 – Lon2) + Lon2}. 392 

Performance metrics 393 

 We performed 5-fold cross-validation repeated 10 times, which allowed us to evaluate 394 

semiparametric and nonparametric SDMs’ predictive error on new data (Shmueli 2010; Kuhn 395 

and Johnson 2013). We blocked by year (rather than systematically excluding a given year) to 396 

account for temporal structure and mimic predictive performance for cases where a random 397 

subset of samples in a given year are not observed (Roberts et al. 2017). Thus, we generated 50 398 

test/train splits, where each selects 20% of the data from each year to reserve for testing, and fits 399 

the models on the remaining 80% training data. After fitting the models to training data, we used 400 

the fitted models to predict bycatch probability (binomial component of the delta-model) and 401 

density (positive component of the delta-model) at the test locations. This gave us predicted and 402 

observed values to compare parametric and nonparametric model performance: area under the 403 

receiver operating characteristic curve (AUC) scores for the binomial component, and root-404 

mean-square error (RMSE) for the positive component. AUC can be interpreted as the 405 

expectation that a model ranks a uniformly drawn random positive (bycatch event) as more likely 406 

than a uniformly drawn random negative (non-bycatch event), and higher values indicate better 407 
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performance (Hand 2009). We tested for significance across- and within-species using Tukey’s 408 

HSD test. 409 

Use as tools to reduce bycatch 410 

 Since AUC and RMSE are abstract metrics of model performance, we calculated a more 411 

tangible measure: how much each of the models could possibly reduce the bycatch-to-target 412 

species catch ratio if it were used to identify and remove high bycatch risk fishing events. In 413 

other words, what does an AUC performance gap of 0.03 mean in terms of bycatch reduction 414 

(keeping catch of the target species constant)? For each species and model fit, we rank-ordered 415 

the bycatch probabilities predicted by the binomial component, identified the X% of fishing 416 

events with the highest bycatch probabilities (X% from 0-10%), removed both bycatch and target 417 

catch from those events, and calculated the resultant change in bycatch-to-target species catch 418 

ratio. 419 

 To be useful bycatch management tools, models also need to generate reasonable spatial 420 

predictions, covariate effects, and pass diagnostic checks on spatial autocorrelation and residual 421 

patterns. To investigate spatial predictions and their uncertainty, we calculated the posterior mean 422 

and variance at each point on a prediction grid, using the R package ‘mgcv’ for GLMs and 423 

GAMs (Wood 2017), and ‘INLA’ for GMRFs (Lindgren and Rue 2015). It is not possible to 424 

calculate posterior distributions for RF, but we calculated standard errors using the infinitesimal 425 

jackknife estimator (‘randomForestCI’, Wager et al. 2014). To compare covariate effects, we 426 

plotted marginal posterior distributions for GLMs, GAMs, and GMRFs. To visualize RF 427 

covariate effects, we used feature contributions calculated by the ‘forestFloor’ package (Welling 428 

et al. 2016). Lastly, we investigated the models’ abilities to reduce spatial autocorrelation using 429 

spline correlograms (‘ncf’, Bjornstad and Falck 2001) and binned residual plots. 430 
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Transferability 431 

In order to evaluate model transferability, i.e. spatial extrapolation performance, we 432 

conducted a second cross-validation blocking on spatial data density. Whereas our first cross-433 

validation procedure partitioned the data into training and testing sets randomly, here we 434 

constructed test/train splits by ordering fishing locations relative to data density. We calculated a 435 

bivariate kernel density estimate at each of the observed fishing locations (‘bkde2D’ function in 436 

‘KernSmooth’ R package) and sequentially used the lowest 0.5%, 1%, 2%, 5%, 10%, and 20% 437 

density locations as test datasets. We then fit the models using only the core, data-rich area of 438 

each fishery, and computed AUC and RMSE for model predictions at the test locations in 439 

sparsely sampled areas. 440 

Results 441 

Performance metrics 442 

Across the six species, RF provided better bycatch predictions than both GAMs and 443 

GMRFs in the binomial (higher AUC, Fig. 2a) and positive (lower RMSE, Fig. 2b) components 444 

of the delta-model. However, the magnitude of this performance advantage varied by species, 445 

and in some cases the within-species differences were not significant. GMRFs outperformed 446 

GAMs in the binomial component for the three species with moderate-high bycatch rates (p < 447 

0.05, Tukey’s HSD; darkblotched rockfish, Pacific halibut, and blue shark in Fig. 2a), but 448 

differences in AUC were not significant for the three rarely caught species (p > 0.05, Tukey’s 449 

HSD; yelloweye rockfish, loggerhead turtle, and leatherback turtle in Fig. 2a). The variability in 450 

model performance among cross-validation runs was similar within a given species but varied 451 

greatly between species; variability in the binomial component was lowest for species with 452 

moderate bycatch rates (darkblotched rockfish and Pacific halibut in Fig. 2a), and in the positive 453 
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component it was lowest for species with high bycatch rates (blue shark in Fig. 2b). 454 

RF modifications designed for data with imbalanced classes, down-sampling and 455 

SMOTE, outperformed the original RF algorithm for the four species with high or low bycatch 456 

rates (Fig. A1). Of the semiparametric models, GMRF-YEAR that allowed for time-varying 457 

spatial effects performed the best (Figs. 2 and A2), whereas the binomial GAM-YEAR that 458 

estimated 2-d splines by year failed to converge. For rare bycatch species with few positive 459 

occurrences, such as yelloweye rockfish, GMRF models that allowed for time-varying spatial 460 

effects offered no improvement over the time-constant spatial models (Fig. A2). For these 461 

species, the estimated GMRF spatial field was less complex than for species with higher bycatch 462 

rates (Fig. A3). 463 

Use as tools to reduce bycatch 464 

When using the models to identify and remove high bycatch risk fishing events, RF also 465 

performed best. Averaged across the six species, RF reduced the bycatch-to-target species catch 466 

ratio by 8% when removing 1% of fishing effort, 34% when removing 5% of fishing effort, and 467 

50% when removing 10% of fishing effort (Fig. 3). Bycatch predictability as measured by 468 

bycatch-to-target ratio reduction generally agreed with the traditional performance metrics (AUC 469 

and RMSE) and varied substantially among the six species (Fig. A4). 470 

 Bycatch risk maps produced by each of the models were similar in some respects. Taking 471 

blue shark bycatch density an example, all models predicted higher and more variable bycatch in 472 

the northwest area of the fishery, and lower bycatch between 25-30°N and 205-220°E (Fig. 4a-473 

d). Maps revealed artifacts of their construction: the mesh triangulation is evident in the GMRF 474 

variance (Fig. 4g), and the sharp gradients in the RF mean (Fig. 4d) and variance (Fig. 4h) are a 475 

consequence of RF trees splitting on latitude and longitude. As expected, the uncertainty of 476 
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GMRF predictions was lower in areas of high data density (compare Figs. 1b and 4g). 477 

Uncertainty in RF predictions did not follow this trend—RF variance was extremely high above 478 

41.5°N and moderately high between 30-33°N (Fig. 4h). However, this was consistent with the 479 

data, as there were few observed sets north of 41.5°N and these had higher and more variable 480 

bycatch (Fig. A5). 481 

 All models estimated similar covariate effects, as demonstrated for darkblotched rockfish 482 

(Fig. 5). The main covariate effects were as expected: probability of bycatch increased with 483 

higher survey-predicted occurrence, increased for tows inside or near RCAs, and showed an 484 

optimal depth range of 100-250 fathoms. 485 

For all species, residuals were typically more variable between cross-validation fits as 486 

model complexity increased (RF > GMRF > GAM > GLM, Figs. S1-S18). Most models did not 487 

exhibit spatial patterns in residuals, although residuals in the positive component of the delta-488 

model were larger and more variable for blue shark and Pacific halibut north of 40°N and 47°N, 489 

respectively (Figs. S1-S2, S11-S12). GMRFs and GAMs had similarly lower residual spatial 490 

autocorrelation compared to the baseline GLMs, with one exception where the GMRF reduced 491 

spatial autocorrelation more than the GAM (blue shark positive model, Fig. A6). RF generally 492 

had the lowest spatial autocorrelation, and it was negative instead of positive at short distances. 493 

The Hawaii longline species had greater decorrelation distances than the West Coast groundfish 494 

species (distance at which spatial autocorrelation goes to zero, 40 km vs. 5 km, Fig. A6). 495 

Transferability 496 

As expected, all models performed worse at spatial extrapolation compared to 497 

interpolation, i.e. worse at predicting locations outside the core area of the fishery when trained 498 

using observations in areas of highest data density (Fig. 6). GLMs and GAMs generally 499 



 

 

 

 

 

Page 23 

performed worse in this test than GMRFs and RFs. GMRFs had lower RMSE than RFs in the 500 

positive component of the delta-model but there was no difference in AUC in the binomial 501 

component (Wilcoxon signed-rank test, p = 0.91 for AUCGMRF ≠ AUCRF, p = 0.003 for 502 

RMSEGMRF ≠ RMSERF). Compared to GMRFs, RF performance was also more sensitive to 503 

withholding data at the edge of the fishery (Fig. 6). The degree to which this was true, however, 504 

differed widely between species. For instance, the performance of both models was stable for 505 

some species (e.g. darkblotched rockfish in binomial component, blue shark in positive 506 

component), indicating that both models captured relevant spatial environment-bycatch 507 

relationships in the core area of the fishery and that these relationships remained valid at the edge 508 

of the fishery. 509 

Discussion 510 

Our results demonstrate the clear potential of species distribution models to predict fishing 511 

activity with higher bycatch rates. While the models’ performance varied considerably, even the 512 

worst performer (GLM without latitude and longitude) achieved AUC from 0.68-0.86 (Fig. 2) 513 

and reduced bycatch-to-target catch ratios on average by 25% for a 5% reduction in fishing effort 514 

(Fig. 3). Random forests performed the best, achieving cross-validated AUC above 0.89 for all 515 

three West Coast groundfish species (Fig. 2) and reducing bycatch-to-target ratios by 34% for a 516 

5% reduction in fishing effort averaged across the six species (Fig. 3). When extrapolating 517 

beyond the geographic range of the data, however, RFs were more sensitive to which data were 518 

withheld and performed similar to, or worse than, GMRFs (Fig. 6). This is consistent with 519 

previous work documenting that more data-driven, complex SDMs can have better interpolation 520 

performance but be worse at spatial extrapolation (Heikkinen et al. 2012; Randin et al. 2006). 521 

 Our results beg the question: if RFs are expected to have higher interpolation accuracy, 522 
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why ever use GMRFs or GAMs? This is a decidedly relevant concern given the significant 523 

research investment in these modeling approaches (Becker et al. 2014; Thorson and Barnett 524 

2017). RF will generally have better out-of-sample prediction, largely due to its ability to 525 

incorporate nonlinear and interaction effects of covariates inherently (i.e., without user 526 

specification). In addition, RF models are much simpler and quicker to both write code for and 527 

run. Contrary to references describing RFs as “black boxes” (Prasad et al. 2006; Cutler et al. 528 

2007; Elith and Leathwick 2009; Evans and Cushman 2009; Kuhn and Johnson 2013), there are 529 

methods for investigating RF model structure, including covariate effects and interactions (Fig. 530 

5, Welling et al. 2016). In a similar vein, it is possible to calculate prediction variance and 531 

confidence intervals for RF (Fig. 4, Meinshausen 2006; Wager et al. 2014), despite older 532 

ecological literature stating otherwise (Cutler et al. 2007; Olden et al. 2008), or using ad-hoc 533 

substitutes such as the standard deviation of individual tree predictions (Smoliński and Radtke 534 

2017). Additionally, promising theoretical work may soon widen the ability to use RFs for 535 

statistical inference by developing asymptotically normal, unbiased point estimates with valid 536 

confidence intervals (Mentch and Hooker 2017; Wager and Athey 2017). In many cases, RF's 537 

performance advantage is probably sufficient to warrant its use over other semiparametric 538 

methods. Yet, there may be several cases where semiparametric methods are preferred. 539 

 Semiparametric frameworks like GMRFs and GAMs have clear advantages over machine 540 

learning algorithms such as RF. First, they can be derived from probability theory and therefore 541 

allow for traditional statistical inference on their mean response predictions. GMRF estimates 542 

full posterior distributions for the response variable (in this study, probability and/or expected 543 

amount of bycatch) everywhere in the spatial domain. This enables us, for instance, to use a 544 

GMRF model to identify regions that are above/below a threshold probability (i.e. risk level) of a 545 
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defined bycatch quantity. By contrast, developing statistical inference based on RF is an active 546 

area of research (Biau and Scornet 2016). Thus, GMRF models may be preferred for applications 547 

where estimates of model uncertainty are decidedly important, such as using models to produce 548 

annual estimates of bycatch (expanded from the observed to unobserved fleet). Second, GMRFs 549 

and GAMs explicitly estimate covariate effects with uncertainty intervals, facilitating ecological 550 

interpretation of factors significantly affecting the response (Fig. 5). Third, GMRF models are 551 

particularly well-suited to incorporate spatial ecological processes, such as movement or spatial 552 

variation in mortality, condition, or observation error (Carson and Flemming 2014; Illian et al. 553 

2013; Thorson et al. 2017). RFs, on the other hand, are based solely on observations without 554 

taking into consideration the data generating process. Fourth, GAMs and GMRFs produce 555 

smoothed spatial predictions that are more likely ecologically plausible, whereas RF spatial 556 

predictions appear rectangular by default due to splits on the geographical coordinates. This can 557 

be mediated, however, by including transformations of the coordinates, fitting a linear model 558 

within each node instead of taking the mean (Quinlan 1992, 1993), or including buffer distances 559 

as covariates (Hengl et al. 2018). Fifth, RFs can simultaneously have high interpolation accuracy 560 

and lower extrapolation accuracy (Fig. 6b). This matters if SDM predictions of bycatch risk are 561 

to be used as a spatial management tool, where predictions in areas with sparse or no sampling 562 

coverage may be most important. Finally, GMRFs and GAMs can be easily specified to produce 563 

independent or exchangeable estimates of a given quantity (e.g., total predicted bycatch in 564 

different years), while it is unclear how to assign a specific dependence-structure on factors in a 565 

RF model. This is important when using estimates from a spatial model as input in a secondary 566 

model, for example, where the secondary model assumes that estimates are independent among 567 

years. In situations where these concerns are inconsequential, however, RF are likely the better 568 
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method for spatial bycatch prediction—they are faster and have better predictive performance 569 

than the alternatives. Even when probabilistic conclusions are required, RF may be useful in an 570 

exploratory manner given their ease of use, speed, and ability to identify nonlinear and 571 

interaction covariate effects for later inclusion in semiparametric models. 572 

On a more detailed level, the six species differed widely in their predictability. The West 573 

Coast groundfish species were more predictable than the Hawaii longline species, likely because 574 

we included several more relevant environmental covariates (WCGOP: sea surface temperature, 575 

depth, rocky habitat, in/near RCA, and survey-predicted occurrence; HILL: sea surface 576 

temperature) and the WCGOP dataset had 2.5 times the number of observations (WCGOP: 42 577 

786; HILL: 16 714). The HILL models' performance could presumably be improved by 578 

incorporating more satellite-based environmental covariates capable of explaining the species' 579 

distributions, such as chlorophyll and SST-derived frontal indices (Nieto et al. 2017). Among the 580 

West Coast species, Pacific halibut was more difficult to predict than the two rockfish species, 581 

despite having more positive bycatch occurrences for the models to fit. One possible explanation 582 

is that adult halibut move more and have less strict habitat associations than rockfish, decreasing 583 

their predictability (Skud 1977; Gunderson 1997). Among the Hawaii longline species, 584 

loggerhead turtles were much easier to predict than leatherback turtles and blue sharks, perhaps 585 

because they have stronger SST-based habitat preferences where the fishing occurs (Howell et al. 586 

2015). Indeed, the loggerhead-temperature association is the basis for TurtleWatch, a decade-587 

long effort to reduce turtle bycatch by providing fishermen with dynamic recommendations of 588 

high bycatch risk areas to avoid in the Central Pacific (Howell et al. 2008). Despite plausible life 589 

history explanations for some among-species differences in predictability, however, the 590 

advantage of fitting time-varying vs. time-constant models appeared to be primarily driven by 591 
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the species' bycatch rates. In other words, there was little difference in model performance for 592 

rare bycatch species (yelloweye rockfish, loggerhead turtle, and leatherback turtle) and greater 593 

differences between models for common bycatch species (darkblotched rockfish, Pacific halibut, 594 

and blue shark, Figs. 2a and A3). 595 

 Given their good predictive performance overall, SDMs could be used to support spatial 596 

bycatch management, whether static (e.g. design habitat closures to be semi-permanent, such as 597 

the Pacific Leatherback Conservation Area along the U.S. West Coast; 50 CFR Part 660) or 598 

dynamic in time (e.g. closures change every year, month, week, etc., such as the Loggerhead 599 

Turtle Conservation Area along the Southern California Bight, 72FR 31756; Fig. 7, as in Dunn et 600 

al. 2016). If so, they should be compared to and integrated with existing tools that aim to reduce 601 

bycatch by producing risk maps; examples include Eguchi et al. (2017), TurtleWatch (Howell et 602 

al. 2008, 2015), and WhaleWatch (Hazen et al. 2016; Breivik et al. 2016). Both TurtleWatch and 603 

WhaleWatch are based on satellite telemetry observations and known habitat preferences of sea 604 

turtles and blue whales, in contrast to the models developed here that rely exclusively on 605 

fisheries observer data. Fisheries observer datasets cover many more bycatch species than those 606 

with satellite tagging programs, which means that SDMs based on fisheries observer data may be 607 

more widely applicable than those based solely on satellite telemetry, especially for species with 608 

moderate to high bycatch rates. However, we found that SDMs were less effective at predicting 609 

rare bycatch events (e.g. yelloweye rockfish, loggerhead turtle, and leatherback turtle in Fig. 2a). 610 

Bycatch occurs when non-target species and fishing gear co-occur, both of which are affected by 611 

various factors, such as environmental conditions, economics, and behavior (Soykan et al. 2014). 612 

Consequently, using fishery observer data combined with animal movement data would provide 613 

a comprehensive dataset to develop predictive models of bycatch, and this may be a prudent 614 
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approach for species with low bycatch rates. 615 

Future efforts to use spatial models to predict fisheries bycatch risk should carefully 616 

consider the hierarchical structure common to observer datasets with less than 100% coverage. In 617 

the typical case where observers are placed on vessels on a trip-by-trip basis and then observe all 618 

sets within a trip, the sets are likely not independent (e.g. sets within the same trip, and trips on 619 

the same vessel may be correlated). As done in this study, including spatiotemporal correlation 620 

structure will account for some of the correlation between sets within a trip because they are 621 

presumably closer together in time and space. One approach is to include the nested data 622 

structure in the model as random effects (Candy 2004; Thorson et al. 2015b), although this can 623 

be more complicated than it first appears (e.g. captains and crew transfer between vessels in the 624 

Hawaii longline fishery, making it unclear whether including a vessel effect is appropriate). 625 

Roberts et al. (2017) make an excellent case for an alternative approach, using block cross-626 

validation to account for spatial, temporal, and group dependence structure when validating and 627 

selecting models. A related issue with the delta-models used here is that they assume two 628 

independent processes determine the probability and amount of bycatch (i.e., the binomial and 629 

positive components of the delta-model). Thorson (2018) and Cantoni et al. (2017) both recently 630 

demonstrated that this is unlikely to be true, and proposed solutions that include parameters 631 

allowing for dependence between the binomial and positive components. Another relatively 632 

simple approach is to use the compound Poisson-gamma, or Tweedie distribution, which Stock et 633 

al. (2019) used in a spatial bycatch analysis and outperformed the equivalent delta-GAM. All of 634 

these solutions should improve spatiotemporal bycatch predictions in the future. 635 

 Finally, just as single-species fisheries management paints a rosier picture than can truly 636 

be implemented, the results presented here are unrealistic in their treatment of multispecies 637 
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fisheries because bycatch prediction cannot be optimized for each individual species 638 

simultaneously. These results are still useful if fisheries managers are particularly concerned 639 

about a single species, but less so if reducing bycatch of multiple species is the objective. Both 640 

RF and GMRF models have multivariate extensions that could fruitfully be applied to 641 

multispecies spatial bycatch prediction, and future work should investigate this possibility 642 

(Thorson et al. 2015a; Ishwaran and Kogalur 2018; Thorson and Barnett 2017). 643 
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Model Parametric? 
Computational 

intensity 
R package Inclusion of spatial locations 

Generalized linear model (GLM) Parametric    

     GLM  Low mgcv None 

Generalized additive model (GAM) Semiparametric    

     GAM-CONSTANT  Low mgcv + s(Lat, Lon, k=100) 

     GAM-YEAR  Medium mgcv + s(Lat, Lon, k=100, by=year) 

Gaussian Markov random field (GMRF) Semiparametric    

     GMRF-CONSTANT  High INLA + f(i, model=spde) 

     GMRF-YEAR  Very high INLA 
+ f(i, model=spde, group=year, 

     control.group=list(model=‘exchangeable’)) 

Random forests (RF) Nonparametric    

     RF-BASE  Low randomForest + Lat + Lon 

     RF-DOWN  Low randomForest + Lat + Lon 

     RF-SMOTE  Low caret + Lat + Lon 

 983 

Table 1. Properties of the considered statistical models and how each model incorporates spatial 984 

fishing locations. The GLM model serves as the baseline model—no spatial data included. GAM 985 

models fit 2-d splines on geographical coordinates (i.e. latitude and longitude), either constant 986 

across years (GAM-CONSTANT) or estimating a different spline for each year (GAM-YEAR). 987 

Gaussian Markov random field (GMRF) models incorporate spatial locations by estimating the 988 

covariance between locations as a random field (with stationary Matern covariance function). As 989 

for GAMs, we fit GMRFs that estimate one random field kept constant across years (GMRF-990 

CONSTANT) or estimate a random field for each year (GMRF-YEAR). RF is nonparametric and 991 

thus only incorporates spatial locations by including covariates of latitude and longitude. All 992 

models for a given species were fit using the same non-spatial covariates (habitat, depth, SST, 993 

etc.). We used the R packages ‘mgcv’ (GLM and GAM), ‘INLA’ (GMRF), ‘randomForest’ (RF), 994 

and ‘caret’ (RF-SMOTE).  995 



 

 

 

 

 

Page 43 

Figure 1. Spatial extent of the two fisheries observer datasets. a) Fishing effort in the West Coast 996 

groundfish trawl fishery from 2003 to 2012 (42,786 haul locations). b) Fishing effort in the 997 

shallow-set Hawaii longline swordfish fishery from 1994 to 2014 (16,714 set locations). 998 

Bivariate kernel density estimates of fishing effort were used to smooth the data (‘bkde2D’ 999 

function in R package ‘KernSmooth’). 1000 

 1001 

Figure 2. Predictive performance boxplots of the a) binomial and b) positive components of the 1002 

delta-model on test data from 5-fold cross-validation repeated 10 times: a) AUC for the binomial 1003 

component, and b) normalized RMSE for the positive component. Across species, random 1004 

forests (RFs) outperformed GAMs and GMRFs (highest AUC, lowest RMSE). Significant (p < 1005 

0.05, Tukey’s HSD) within-species performance differences from RF and GMRF are denoted 1006 

with black and blue asterisks, respectively. Only the best submodel, e.g. CONSTANT or YEAR, 1007 

within each model class for each species is shown here (see Supplement). Species abbreviations: 1008 

DBRK = darkblotched rockfish, PHLB = Pacific halibut, YEYE = yelloweye rockfish, LOGG = 1009 

loggerhead turtle, LEATH = leatherback turtle, BLUE = blue shark.  1010 

 1011 

Figure 3. Bycatch-to-target species catch ratio achieved by using the binomial component of the 1012 

delta-model to predict and remove fishing sets in the test data, relative to the bycatch-to-target 1013 

ratio with no fishing sets removed. Lines show median of 50 cross-validation runs for each 1014 

model class (5-fold CV repeated 10 times), averaged across the six species. Shaded areas are 1015 

bootstrapped 95% confidence intervals for the median. Random forest (RF) performed the best, 1016 

reducing the bycatch-to-target ratio by 34% when removing 5% of fishing, and by 50% when 1017 

removing 10% of fishing. As in Figure 2, only the best submodel within each model class (e.g. 1018 
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CONSTANT or YEAR) for each species is shown here. 1019 

 1020 

Figure 4. Maps of predicted blue shark bycatch density with uncertainty for the Hawaii longline 1021 

swordfish fishery in 2014. Left panels show the mean bycatch density, log(number per set), 1022 

estimated using the four model frameworks: a) GLM, b) GAM, c) GMRF, and d) RF. Right 1023 

panels show the log-variance of bycatch density: e) GLM, f) GAM, g) GMRF, and h) RF. All 1024 

models predict higher, and more variable, bycatch density in the northwest area of the fishery. 1025 

Maps created by GMRF and RF show artifacts of their construction: the mesh triangulation is 1026 

evident in the GMRF variance map (g), and the sharp gradients in the RF mean (d) and variance 1027 

(h) maps are a consequence of RF trees splitting on latitude and longitude. 1028 

 1029 

Figure 5. Covariate effects on the probability of darkblotched rockfish bycatch (binomial 1030 

component of the delta-model). All models estimate a positive effect of PredOcc (predicted 1031 

occurrence from survey data, left column), quadratic effect of Depth (center), and positive effect 1032 

of In/near RCA (haul location inside or near rockfish conservation area boundary, right). GLM, 1033 

GAM, and GMRF covariate effects are marginal posterior distributions (‘mgcv’ and ‘INLA’ 1034 

packages in R), and RF covariate effects are feature contributions ('forestFloor' package in R). 1035 

 1036 

Figure 6. Predictive performance of the a) binomial and b) positive components of the delta-1037 

models at test locations beyond the geographic data range (i.e. spatial extrapolation). We fit a 2d 1038 

kernel density estimate at each observed fishing location (‘bkde2D’ function in ‘KernSmooth’ R 1039 

package), then sequentially used the lowest 0.5%, 1%, 2%, 5%, 10%, and 20% density locations 1040 

as test datasets. Triangles show median model performance from 5-fold cross-validation runs 1041 
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with random test/train splits (Fig. 2). When extrapolating spatially, all models performed equal to 1042 

or worse than when interpolating (i.e. points are lower AUC and higher RMSE than triangles at 1043 

20% removed). Compared to GMRF, RF performance was more sensitive to withholding data at 1044 

the edge of the fishery (i.e. regression lines have steeper slopes). Missing points and lines 1045 

indicate the model failed to converge, as for GMRF with yelloweye rockfish. Species 1046 

abbreviations: DBRK = darkblotched rockfish, PHLB = Pacific halibut, YEYE = yelloweye 1047 

rockfish, LOGG = loggerhead turtle, LEATH = leatherback turtle, BLUE = blue shark. 1048 

 1049 

Figure 7. GMRF-YEAR random field for bycatch probability of darkblotched rockfish from 1050 

2008 to 2012.  1051 

 1052 

Additional supplemental items may be found in the online version of this article: 1053 

Supplemental Figures S1-S18. Maps of model residuals for all species for the binomial and 1054 

positive components of the delta-model. 1055 

Figure A1. Binomial component predictive performance (AUC) for the three random forest 1056 

(RF) submodels for all six species. 1057 

Figure A2. Binomial component predictive performance (AUC) for the two GMRF models: 1058 

CONSTANT (white, one random field constant across years) and YEAR (grey, random 1059 

field fit for each year). 1060 

Figure A3. GMRF-CONSTANT random field for bycatch probability of the three U.S. West 1061 

Coast groundfish species (DBRK = darkblotched rockfish, PHLB = Pacific halibut, and 1062 

YEYE = yelloweye rockfish). 1063 

Figure A4. Bycatch-to-target species catch ratio achieved for each species by using the 1064 
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binomial component of each delta-model to predict and remove fishing sets in the test 1065 

data, relative to the bycatch-to-target ratio with no fishing sets removed. 1066 

Figure A5. Distribution of blue shark bycatch by latitude. 1067 

Figure A6. Spatial spline correlograms of residuals from the A) binomial and B) positive 1068 

components of the delta-models. 1069 

1070 
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Figure 1. 1071 
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Figure 2. 1074 
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Figure 3. 1077 
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Figure 4. 1081 
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Figure 5. 1084 
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Figure 6. 1087 
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Figure 7. 1089 
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