Use and Abuse of Mixing Models

BRIAN STOCK, BRICE SEMMENS, ERIC WARD, ANDREW PARNELL, ANDREW JACKSON, DONALD PHILLIPS, STUART BEARHOP, RICHARD INGER

People use mixing models a lot

People use mixing models a lot

Year

Use and Abuse of Mixing Models ESA 2015

Phillips et al. (2014)

People use mixing models a lot

Year

Phillips et al. (2014)

Pros of Bayesian mixing models

Firm statistical foundation

- True probability distributions
- Uncertainty in consumer, source, and TDF data

Biological complexity

- Differences due to covariates (e.g. sex, region, size)
- Non-biotracer data as priors (e.g. stomach/fecal contents, prey abundance)

Cons of Bayesian mixing models

They're more complex and prone to abuse

Garbage in, garbage out (ex. many sources, 2 tracers)

Lots of questions

Pitfalls and misconceptions

- 1. Source geometry
- 2. MCMC convergence
- 3. Effect of priors
- 4. Error structures
- 5. Source lumping/splitting
- 6. How to include covariates
- 7. Application to biotracers other than stable isotopes

Pitfalls and misconceptions

- 1. Source geometry
- 2. MCMC convergence
- **3.** Effect of priors
- 4. Error structures
- 5. Source lumping/splitting
- 6. How to include covariates
- 7. Application to biotracers other than stable isotopes

Effect of priors/ "Bayesian mixing models are biased"

REDUCE THE INFLUENCE OF THE GENERALIST PRIOR

0. What is a prior?

$\begin{array}{ll} Pr(\theta | data) \propto Pr(\theta) * Pr(data | \theta) \\ \text{Posterior} & \text{Prior} & \text{Likelihood} \end{array}$

"From a Bayesian perspective, the principle of unbiasedness is reasonable in the limit of large samples, but otherwise it is potentially misleading."

Problem: proportions are not independent!

Problem: proportions are not independent!

2. Effect of the "uninformative" prior

1. How good is your data?

Brett (2014)

2. Effect of the "uninformative" prior

1. How good is your data?

Use and Abuse of Mixing Models ESA 2015

Brett (2014)

2. Effect of the "uninformative" prior

1. How good is your data?

2. How much data do you have?

Brett (2014)

You control the mean proportions AND the variance ("informativeness")

You control the mean proportions AND the variance ("informativeness")

You control the mean proportions AND the variance ("informativeness")

8

25

You control the mean proportions AND the variance ("informativeness")

 $\alpha = (30, 8, 25)$

0.8

0.8

0.8

 p_3

1.0

1.0

1.0

Use and Abuse of Mixing Models ESA 2015

You control the mean proportions AND the variance ("informativeness")

Effect of priors/ "Bayesian mixing models are biased"

REDUCE THE INFLUENCE OF THE GENERALIST PRIOR:

- 1. COLLECT MORE DATA (SOURCE AND CONSUMER)
- 2. SPECIFY A NON-GENERALIST PRIOR

Application to other biotracers "Stable isotope" mixing models

- Fatty acids
- Compound-specific stable isotopes
- Element concentrations
- Sediment color

- Fatty acids
- Compound-specific stable isotopes
- Element concentrations
- Sediment color

Great promise!

Theoretical consumer from source data

- o 3 stable isotopes
- o 6 essential fatty acids
- o 19 non-essential fatty acids

SIAR

More biotracers = better performance

Source_i data are consumers fed source *i* • TDF = 0

22 fatty acids

MixSIR

Galloway et al. (2014)

Nosrati et al. (2014)

Mixtures are sediment samplesTDF = 0

28 element concentrations

Other sediment datasets:

- element concentrations (n = 56)
- color variables (n = 15)
- CSSI (n = 20)

1. Testing mix/source geometry

Less obvious if mix data is inside source hypervolume

Standard in sediment fingerprinting:

• Check each dimension separately

Use and Abuse of Mixing Models ESA 2015

Phillips and Gregg (2003)

2. Check for normality

Fatty acid profiles are *proportions*

$$t_{j} \sim N(alr(\tau_{j}), \Sigma_{\tau})$$
$$\tau_{j} = C\left\{\sum_{s}^{n} (\pi_{j,s}\Phi_{s}) (\kappa_{s} \otimes \phi_{j,s})\right\}$$

Fatty acid profiles (n = 25):

$$t_{j} \sim N(alr(\tau_{j}), \Sigma_{\tau})$$
$$\tau_{j} = C\left\{\sum_{s}^{n} (\pi_{j,s} \Phi_{s}) (\kappa_{s} \otimes \phi_{j,s})\right\}$$

$$t_r^{SI} = \sum_{s}^{n} \pi_{r,s} (y_{q,r} + \gamma_s)$$
$$clr(\pi_r) \sim N(\Pi, \Sigma_{\Pi})$$
$$\gamma_{s,SI} \sim N(\nu_{SI}, \sigma_{SI}).$$

Weight each data type equally? Weight by number of tracers?

Neubauer and Jensen (2015)

4. Selecting biotracers

Are more biotracers always better?

Discriminant function analysis (DFA) to choose "optimum subset"

Biotracer selection within mixing model?

Application to other biotracers "Stable isotope" mixing models

TEST MIX/SOURCE GEOMETRY CHECK FOR NORMALITY MULTIPLE DATA TYPES SELECTING BIOTRACERS

Pitfalls and misconceptions

- 1. Source geometry
- 2. MCMC convergence
- **3.** Effect of priors
- 4. Error structures
- 5. Source lumping/splitting
- 6. How to include covariates
- 7. Application to biotracers other than stable isotopes

Acknowledgements

MixSIAR team:

- Brice Semmens
- Eric Ward
- Andrew Parnell
- Andrew Jackson
- Donald Phillips
- Stuart Bearhop
- Richard Inger

Support:

Extreme Science and Engineering Discovery Environment

Error structures

Error structures

Use and Abuse of Mixing Models ESA 2015

Use and Abuse of Mixing Models ESA 2015

Use and Abuse of Mixing Models ESA 2015

Parnell et al. (2010)

Use and Abuse of Mixing Models ESA 2015

Parnell et al. (2010)

Use and Abuse of Mixing Models ESA 2015

Stock and Semmens (submitted)

Stock and Semmens (submitted)

Error structures

Stock and Semmens (submitted)

Error structures

MIXSIR (N = 1)

SIAR

MULTIPLICATIVE RESIDUAL ERROR