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People use mixing models a lot
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Use and Abuse of Mixing Models ESA 2015Phillips et al. (2014)



People use mixing models a lot
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Pros of Bayesian mixing models
Firm statistical foundation
 True probability distributions 

 Uncertainty in consumer, source, and TDF data

Biological complexity
 Differences due to covariates (e.g. sex, region, size)

 Non-biotracer data as priors (e.g. stomach/fecal contents, prey abundance)
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Cons of Bayesian mixing models
They’re more complex and prone to abuse

Garbage in, garbage out (ex. many sources, 2 tracers)
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Lots of questions
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Pitfalls and misconceptions
1. Source geometry

2. MCMC convergence

3. Effect of priors

4. Error structures

5. Source lumping/splitting

6. How to include covariates

7. Application to biotracers other than stable isotopes

Semmens et al. (in prep) Use and Abuse of Mixing Models ESA 2015
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Effect of priors/ 
“Bayesian mixing models are biased”
REDUCE THE INFLUENCE OF THE GENERALIST PRIOR
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0. What is a prior?
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“From a Bayesian perspective, the principle of 
unbiasedness is reasonable in the limit of large samples, 
but otherwise it is potentially misleading.”

Gelman et al. (1995)

𝑃𝑟 𝜃 𝑑𝑎𝑡𝑎 ∝ 𝑃𝑟 𝜃 ∗ 𝑃𝑟 𝑑𝑎𝑡𝑎 𝜃
Posterior Prior Likelihood



1. There is no “uninformative” prior
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1. There is no “uninformative” prior
Problem: proportions are not independent!
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2. Effect of the “uninformative” prior
1. How good is your data?
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2. Effect of the “uninformative” prior
1. How good is your data? 2. How much data do you have?
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N = 1

Brett (2014)



3. Constructing informative priors 
You control the mean proportions AND the variance (“informativeness”)
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α = (1, 1, 1)

α = (10, 10, 10)

α = (100, 100, 100)



3. Constructing informative priors 
You control the mean proportions AND the variance (“informativeness”)
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3. Constructing informative priors 
You control the mean proportions AND the variance (“informativeness”)
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𝜶 =
𝟑 ∗ (𝟑𝟎, 𝟖, 𝟐𝟓)

𝟔𝟑
𝜶 = (𝟑𝟎, 𝟖, 𝟐𝟓)
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Effect of priors/ 
“Bayesian mixing models are biased”
REDUCE THE INFLUENCE OF THE GENERALIST PRIOR:

1. COLLECT MORE DATA (SOURCE AND CONSUMER)

2. SPECIFY A NON-GENERALIST PRIOR
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Application to other biotracers
“Stable isotope” mixing models 
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Application to other biotracers
 Fatty acids

 Compound-specific stable isotopes

 Element concentrations

 Sediment color
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Application to other biotracers
 Fatty acids

 Compound-specific stable isotopes

 Element concentrations

 Sediment color

Great promise!
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Application to other biotracers

Theoretical consumer from source data
o 3 stable isotopes

o 6 essential fatty acids

o 19 non-essential fatty acids

SIAR

More biotracers = better performance
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Application to other biotracers

Sourcei data are consumers fed source i
◦ TDF = 0

22 fatty acids

MixSIR
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Application to other biotracers

Mixtures are sediment samples
◦ TDF = 0

28 element concentrations

Other sediment datasets:
◦ element concentrations (n = 56)

◦ color variables (n = 15)

◦ CSSI (n = 20)

Use and Abuse of Mixing Models ESA 2015Nosrati et al. (2014)



1. Testing mix/source geometry
Less obvious if mix data is inside 
source hypervolume

Standard in sediment fingerprinting:
◦ Check each dimension separately
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2. Check for normality

Use and Abuse of Mixing Models ESA 2015Neubauer and Jensen (2015)

Fatty acid profiles are proportions



3. Multiple data types
Fatty acid profiles (n = 25): Stable isotopes (n = 3):

Use and Abuse of Mixing Models ESA 2015Neubauer and Jensen (2015)

Weight each data type equally?
Weight by number of tracers?



4. Selecting biotracers

Use and Abuse of Mixing Models ESA 2015Semmens et al. (in prep)

Are more biotracers always better?

Discriminant function analysis (DFA) to 
choose “optimum subset”

Biotracer selection within mixing model?



Application to other biotracers
“Stable isotope” mixing models 
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TEST MIX/SOURCE GEOMETRY

CHECK FOR NORMALITY

MULTIPLE DATA TYPES

SELECTING BIOTRACERS



Pitfalls and misconceptions
1. Source geometry

2. MCMC convergence

3. Effect of priors

4. Error structures

5. Source lumping/splitting

6. How to include covariates

7. Application to biotracers other than stable isotopes
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Error structures
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Error structures
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Error structures

Source 1 Source 2

δ13C
-28 -24-26

Consumer

SIAR σ2
process + σ2

resid High variance Note: cannot fit N = 1
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Error structures

Source 1 Source 2
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-28 -24-26
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Error structures

Source 1 Source 2

δ13C
-28 -24-26

Consumer

σ2
process * εresid Low variance

ε < 1
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Error structures

Source 1 Source 2

δ13C
-28 -24-26

Consumer

σ2
process * εresid High variance
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Error structures

Stock and Semmens (submitted)

MixSIR
SIAR
ε

MixSIR SIAR ε
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Error structures
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MIXSIR (N = 1)

SIAR

MULTIPLICATIVE RESIDUAL ERROR


